WSQ/DSQ: A Practical Approach for Combined
Querying of Databases and the Web*

Roy Goldman, Jennifer Widom
Stanford University

{royg,widom} @cs.stanford.edu
www-db.stanford.edu

Abstract

We present WSQ/DSQ (pronounced “wisk-disk”), a new appndac combining the query facilities
of traditional databases with existing search engines et¥ab. WSQ, fok\eb-Supported (Database)
Queries, leverages results from Web searches to enhance SQL qoeges relational database. DSQ,
for Database-Supported (W\eb) Queries, uses information stored in the database to enhance andiexpl
Web searches. This paper focuses primarily on WSQ, desgriisimple, low-overhead way to sup-
port WSQ in a relational DBMS, and demonstrating the utitfWSQ with a number of interesting
queries and results. The queries supported by WSQ are ehbplevo virtual tables, whose tuples
represent Web search results generated dynamically dguegy execution. WSQ query execution may
involve many high-latency calls to one or more search erggidering which the query processor is
idle. We present a lightweight technique callsgnchronous iteration that can be integrated easily into
a standard sequential query processor to enable concyrbateween query processing and multiple
Web search requests. Asynchronous iteration has broagbcatons than WSQ alone, and it opens up
many interesting query optimization issues. We have d@esl@ prototype implementation of WSQ by
extending a DBMS with virtual tables and asynchronousiitenaperformance results are reported.

1 Introduction

Information today is decidedly split between structuretadstored in traditional databases and the huge
amount of unstructured information available over the \WoWide Web. Traditional relational, object-
oriented, and object-relational databases operate ovistmgctured, typed data, and languages such as
SQL and OQL enable expressive ad-hoc queries. On the Wellpmsibf hand-written and automatically-
generated HTML pages form a vast but unstructured amalgamat information. Much of the Web data
is indexed by search engines, but search engines suppgrtainy simple keyword-based queries.

In this paper we propose a new approach that combines theegtrengths of traditional databases and
Web searches into a single query systaWSQ/DSQ (pronounced “wisk-disk”) stands faleb-Supported
(Database) Queries/Database-Qupported (Web) Queries. WSQ/DSQ is not a new query language. Rather,
it is a practical way to exploit existing search engines tgraent SQL queries over a relational database
(WSQ), and for using a database to enhance and explain WethesaDSQ). The basic architecture is
shown in Figure 1. Each WSQ/DSQ instance queries one or madiibnal databases via SQL, and
keyword-based Web searches are routed to existing seagiesn Users interacting with WSQ/DSQ can
pose queries that seamlessly combine Web searches wittiainatl database queries.

*This work was supported by the National Science Foundatioleugrant 11S-9811947 and by NASA Ames under
grant NCC2-5278.

www.manaraa.com

Users ’ﬂ“nl
A

N \\‘7(WSQ/DSQ)
World-Wide \/
.

Web SQL

Ay

Keyword
Search y

_Engine / Searches

Local
Database

Local
Database

Multiple WSQ/DSQ Instances
over different databases

Figure 1: Basic WSQ/DSQ architecture

As an example of WSQ (Web-Supported Database Queries)psemur local database has information
about all of the U.S. states, including each state’s pojpuland capital. WSQ can enhance SQL queries
over this database using Web search engines to pose theifalinteresting WSQ queries (fully specified
in Section 3.1):

e Rank all states by how often they are mentioned by name on e W

Rank states by how often they appear, normalized by statelgtom.

Rank states by how often they appear on the Web near the ptoaseorners”.
Which state capitals appear on the Web more often than theitgalf?

Get the top two URLSs for each state.
If Google and AltaVista both agree that a URL is among the t&fRE s for a state, return the state
and the URL.

WSQ does not perform any “magic” interpretation, cleanioigfiltering of data on the Web. WSQ enables
users to write intuitive SQL queries that automatically@xe Web searches relevant to the query and com-
bine the search results with the structured data in the dagabwith WSQ, we can easily write interesting
gueries that would otherwise require a significant amoumro§ramming or manual searching.

DSQ (Database-Supported Web Queries) takes the converssah, enhancing Web keyword searches
with information in the database. For example, suppose atabdse contains information about movies,
in addition to information about U.S. states. When a DSQ searches for the keyword phrase “scuba
diving”, DSQ uses the Web to correlate that phrase with tanrke known database. For example, DSQ
could identify the states and the movies that appear on tHeniéest often near the phrase “scuba diving”,
and might even find state/movie/scuba-diving triples (eag.underwater thriller filmed in Florida). DSQ
can be supported using the system and techniques we pragbig paper, but we focus primarily on Web-
supported queries (WSQ), leaving detailed exploration $for future work.

WSQ is based on introducing twartual tables, WebPages andWebCount, to any relational database.
A virtual table is a program that “looks” like a table to a querocessor, but returns dynamically-generated

www.manaraa.com

tuples rather than tuples stored in the database. We withdtize our virtual tables in Section 3, but
for now it suffices to think owebPages as an infinite table that contains, for each possible Welrkear
expression, all of the URLSs returned by a search engine &drekpressionwebCount can be thought of as
an aggregate view ov&vebPages: for each possible Web search expression, it contains thertomber of
URLSs returned by a search engine for that expression. WavedPages_AV andWebCount_AV to denote
the virtual tables corresponding to the AltaVista searchire®y and we can have similar virtual tables for
Google or any other search engine. By referencing thesealitables in a SQL query, and assuring that
the virtual columns defining the search expression are aaynd during processing, we can answer the
example queries above, and many more, with SQL alone.

While the details of WSQ query execution will be given latéishould be clear that many calls to a
search engine may be required by one query, and it is not obviow to execute such queries efficiently
given typical search engine latency. One possibility is twlify search engines to accept specialized calls
from WSQ database systems, but in this paper we instead stvveimall modifications to a conventional
database query processor can exploit properties of egisgarch engines.

When query processing involves many search engine reqlestkey observations are:

e The latency for a single request is very high.
e Unless it explicitly supports parallelism, the query preser is idle during the request.
e Search engines (and the Web in general) can handle manyreemnictequests.

Thus, for maximum efficiency, a query processor must be ablestie many Web requests concurrently
while processing a single query. As we will discuss in Secto traditional (non-parallel) query proces-
sors are not designed to handle this requirement. We mighbleeto configure or modify a parallel query
processor to help us achieve this concurrency. Howeveajlpbquery processors tend to be high-overhead
systems designed for multiprocessor computers, geareatdswarge data sets and/or complex queries. In
contrast, the basic problem of issuing many concurrent \&gbests within a query has a more limited scope
that does not require traditional parallelism for a satigfey solution. To support our WSQ framework, we
introduce a query execution technique calksgnchronous iteration that provides low-overhead concur-
rency for external virtual table accesses and can be intyasily into conventional relational database
systems.
The main contributions of this paper are:

e A formalization of thewebPages andWebCount virtual tables and their integration into SQL, with
several examples illustrating the powerful WSQ queriebbathby this approach, and a discussion of
support for such virtual tables in existing systems (Sec8p

e Asynchronous iteration, a technique that enables non-parallel relational quepggssors to execute
multiple concurrent Web searches within a single query t{Seact). Although we discuss asyn-
chronous iteration in the context of WSQ, it is a general yyeocessing technique applicable to
other scenarios as well, and it opens up interesting newyquimization issues.

e Experimental results from our WSQ prototype (Section 5avahg that asynchronous iteration can
speed up WSQ queries by a factor of 10 or more.

www.manaraa.com

2 Reéated Work

Several approaches have been proposed for bridging théedbatween structured databases and the un-
structured Web.Wrappers are used in many systems to make information in Web pagegicially as
database elements, e.g., [AK97, CDSS98, HGMT, PGGMU95, RS97]. Wrappers are a useful means
of enabling expressive queries over data that was not rmtdgsdesigned for querying, and wrappers
also facilitate the integration of data from multiple, pibds heterogeneous sources, e.g., [CGVB4,
LRO96, RAH™96]. Unfortunately, wrappers over Web data tend to be laf@nrsive and brittle, of-
ten requiring “screen-scraping” to parse HTML into meaimgtructures. Semistructured data models
[Abi97, Bun97, PGMW95], in particulaXML [XML97], provide some hope for introducing structure into
Web data and queries [DFB9, GMW99]. However, we believe that vast amounts of infdiorawill
remain in HTML, and will continue to be queried through séaengines such as AltaVista, Google, and
others. New query languages have been proposed for dynmieaigating and extracting data from the
Web, e.g., [KS95, MMM97]. Our work differs in that we do novent a new query language, and our
gueries combine results from Web searches with traditistractured data.

The techniques we know of that most closely relate to WSQ/&Qeported in [CDY95] and [DM97].
Written before the explosion of the World-Wide Web, [CDY9Fuses on execution and optimization
techniques for SQL queries integrated with keyword-basddreal text sources. There are three main
differences between [CDY95] and our work. First, they aimmimimize the number of external calls,
rather than providing a mechanism to launch the calls coantly. Nevertheless, some of techniques they
propose are complementary to our framework and could beocated. Second, they assume that external
text sources return search results as unordered sets, e@tites optimizations that are not always possible
when integrating SQL with (ranked) Web search results. d;hdome of their optimizations are geared
towards external text searches that return small (or empsylts, which we believe will be less common
in WSQ given the breadth of the World-Wide Web. [DM97] dissess approaches for coupling a search
engine with SQL, again without focusing on the World-WidebB/N& query rewrite scheme is proposed for
automatically translating queries that call a search engia a user-defined predicate into more efficient
gueries that integrate a search engine as a virtual tableleWie also use a virtual table abstraction for
search engines, [DM97] does not address the issue of highela external sources, which forms the core
of much of this paper.

The integration of external relations into a cost-basethupér for LDL is discussed in [CGK89]. The
related, more general problem of creating and optimizingrgyplans over external sources with limited
access patterns and varying query processing capablisisdeen considered in work on data integration,
e.g., [HKWY97, LRO96, Mor88, RSU95, YLGMU99]. In contraste focus on a specific scenario of one
type of external source (a Web search engine) with knownyoeegpabilities. [BT98] addresses the situation
where an external source may be unavailable at a partidodar & query over multiple external sources is
rewritten into a sequence of incremental queries over sslusesources, such that the query results can be
combined over time to form the final result. Although the agyonous iteration technique we introduce
shares the general spirit of computing portions of a quedyfdiimg in remaining values later, our technique
operates at a much finer (tuple-level) granularity, it doesinvolve query rewriting, and the goal is to

www.manaraa.com

enable concurrent processing of external requests raiharttandling unavailable sources.

As will be seen in Section 4, we rely alependent joins to supply bindings to our virtual tables when
we integrate Web searches into a SQL query. Hence, previodsan optimizing and efficiently executing
queries involving dependent joins is highly applicable. éngral-purpose query optimization algorithm
in the presence of dependent joins is provided in [FLMS99]caghing technique that can be applied to
improve the implementation of dependent joins is discugs¢eN96].

Much of the research discussed in this section is eithempirgdry or complementary to WSQ/DSQ.
To the best of our knowledge, no previous work has taken oprogeh of enabling a non-parallel database
engine to support many concurrent calls to external soutagag the execution of a single query.

3 Virtual Tablesin WSQ

For the purpose of integrating Web searches with SQL, we aarabstract a Web search engine through a
virtual WebPages table:

WebPages(SearchExp, T1, T2, ..., Tn, URL, Rank, Date)

whereSearchExp is a parameterized string representing a Web search eigmesearchExp uses %1”,
“9%2", and so on to refer to the values that are bound during quesggssing to attribute®l, T2, ..., Tn,
in the Unix printf or scanf style. For example, iSearchExp is “%1 near %2”, T1 is bound to “Colorado”
andT2 is bound to “Denver”, then the corresponding Web searciCiddrado near Denver”. For a given
SearchExp and given bindings foir1, T2, ... Tn, WebPages contains O or more (virtual) tuples, where
attributesURL, Rank, andDate are the values returned by the search engine for the seapchssion. The
first URL returned by the search engine Rk = 1, the second ha®ank = 2, and so on. Itis only practical
to useWebPages in a query whereSearchExp, T1, T2, ..., Tn are all bound, either by default (discussed
below), through equality with a constant in théere clause, or through an equi-join. In other words, these
attributes can be thought of as “inputs” to the search endinehermore, because retrieving all URLSs for a
given search expression could be extremely expensiveifmegiumany additional network requests beyond
the initial search), it is prudent to restriBank to be less than some constant (eRank < 20), and this
constant also can be thought of as an input to the searchesngin

A simple but very useful view oveiebPages is:

WebCount(SearchExp, T1, T2, ..., Tn, Count)

whereCount is the total number of pages returned for the search expressany Web search engines can
return a total number of pages immediately, without deiigthe actual URLS. As we will se®yebCount
is all we need for many interesting queries.

Note that for both tables, not only are tuples generated myeedly during query processing, but the
number of columns is also a function of the given query. Teaaiquery might bind only columni for a
simple keyword search, or it might birid, T2, ..., T5 for a more complicated search. Thus, we really have
an infinite family of infinitely large virtual tables. For ceenience in queriegearchExp in both tables has

www.manaraa.com

a default value of %1 near %2 near %3 near ... near %n”.! For WebPages, if no restriction onRank is
included in the query, currently we assume a default selegiredicateRank < 20 to prevent “runaway”
queries.

Note also that virtual tabl®/ebCount could be viewed instead as a scalar function, with inputpatars
SearchExp, T1, T2, ..., Tn, and output valu€ount. However, sinc&vebPages and other virtual tables can
be more general than scalar functions—they can “return’mmgber of columns and any number of rows—
our focus in this paper is on supporting the general case.

3.1 Examples

In this section we us#/ebPages andWebCount to write SQL queries for the examples presented informally
in Section 1. In addition to the two virtual tables, our dasd contains one regular stored table:

States(Name, Population, Capital)

For each query, we restate it in English, write it in SQL, ahdvwg a small fraction of the actual result. The
population values used for Query 2 are 1998 estimates frents. Census Bureau [Uni98]. Queries 1-5
were issued to AltaVista (altavista.com), and Query 6 irgtgs results from both AltaVista and Google
(google.com). All searches were performed in October 7999.

Query 1: Rank all states by how often they appear by name on the Web.

Select Name, Count
From States, WebCount
Where Name = T1
Order By Count Desc

Note that we are relying on the default value 861" for WebCount.SearchExp. The first five results are:

<California, 4995016> <Washington, 4167056> <New York, 3764513>
<Texas, 2724285> <Michigan, 1621754> ...

Readers might be unaware that Texas and Michigan are thergh8th most populous U.S. states, respec-
tively. Washington ranks highly because it is both a statethe U.S. capital; a revised query could exploit
search engine features to avoid some false hits of this@abut remember that our current goal is not one
of “cleansing” or otherwise improving accuracy of Web séax

Query 2: Rank states by how often they appear, normalized by statelaion.

Select Name, Count/Population As C
From States, WebCount

Where Name = T1

Order By C Desc

'For search engines such as Google that do not explicitlyatitige ‘near” operator, we use%1 %2 ... %n” as the default.
2]t turns out that repeated identical Web searches may rediightly different results, so your results could exhibitrwr

differences.

www.manaraa.com

Now, the first five results are:
<Alaska, 1149> <Washington, 733> <Delaware, 690> <Hawaii, 635> <Wyoming, 603> ...
Query 3: Rank states by how often they appear on the Web near theepticas corners”.

Select Name, Count

From States, WebCount

Where Name = T1 and T2 = "four corners’
Order By Count Desc

Recall that %1 near %2” is the default value foiWebCount.SearchExp whenT1 andT2 are bound. There
is only one location in the United States where a person can bmur states at once: the “four corners”
refers to the point bordering Colorado, New Mexico, Arizpaad Utah. Note the dramatic dropoff@ount
between the first four results and the fifth:

<Colorado, 1745> <New Mexico, 1249> <Arizona, 1095> <Utah, 994> <California, 215> ...
Query 4: Which state capitals appear on the Web more often than abe isself?

Select Capital, C.Count, Name, S.Count
From States, WebCount C, WebCount S
Where Capital = C.T1 and Name = S.T1 and C.Count > S.Count

In the following (complete) results, we again see some éitinhs of text searches on the Web—more than
half of the results are due to capitals that are very commoatlirer contexts, such as “Columbia” and
“Lincoln™

<Atlanta, 1053868, Georgia, 958280> <Lincoln, 669059, Nebraska, 385991 >

<Boston, 1409828, Massachusetts, 1006946> <Jackson, 1120655, Mississippi, 662145>
<Pierre, 663310, South Dakota, 283821> <Columbia, 1668270, South Carolina, 540618>

Query 5: Get the top two URLSs for each state. We omit query resultsesthey are not particularly com-
pelling.

Select Name, URL, Rank

From States, WebPages

Where Name = T1 and Rank <=2
Order By Name, Rank

Query 6: If Google and AltaVista both agree that a URL is among thet@fRLs for a state, return the state
and the URL.

Select Name, AV.URL
From States, WebPages_AV AV, WebPages_Google G
Where Name = AV.T1 and Name = G.T1 and AV.Rank <=5 and G.Rank <=5 and AV.URL = G.URL

www.manaraa.com

Surprisingly, Google and AltaVista only agreed on the ratee of 4 URLSs:

<Indiana, www.indiana.edu/copyright.html> <Louisiana, www.usl.edu>
<Minnesota, www.lib.umn.edu> <Wyoming, www.state.wy.us/state/welcome.html>

3.2 Support for virtual tablesin existing systems

Both IBM DB2 and Informix currently support virtual tables some form. We give a quick overview of
the support options in each of these products, summarizimgwe can modify our abstract virtual table
definitions to work on such systems. (We understand thatl©edso expects to support virtual tables in a
future release.) See [RP98] for more information about sugpr virtual tables in database products.

In DB2, virtual tables are supported througtle functions, which can be written in Java or C [IBM].
A table function must export the number and names of its cokinidence, DB2 cannot support a variable
number of columns, so we would need to introduce a family bletdunctionswebPages1, WebPages?2,
etc. to handle the different possible number of argumenggpisome predetermined maximum; similarly
for WebCount. To the query processor, a table function is an iterator supm method€Open, GetNext,
andClose. Currently, DB2 provides no “hooks” into the query proceskw pushing selection predicates
into a table function. At first glance, this omission appé#seprevents us from implementing/ebPages or
WebCount, since both tables logically contain an infinite number @i¢s and require selection conditions
to become finite. However, DB2 table functions support patans that can be correlated to the columns of
other tables in &rom clause. For example, consider:

Select R.c1, S.c3
From R, Table(S(R.c2))

In this query,S is a table function that takes a single parameter. DB2 wéhte a new table function
iterator for each tuple iR, passing the value af2 in that tuple to theDpen method ofS. (DB2 requires
that references t8 come afterR in the From clause.) With this feature, we can implem&whbPages and
WebCount by requiring thatSearchExp and then search terms are supplied as table function parameters,
either as constants or using them clause join syntax shown in the example query above. In tee o
WebPages, we must pass the restriction &ank as a parameter to the table function as well.

Informix supports virtual tables through itsrtual table interface [SBH98]. Unlike DB2, Informix
provides hooks for a large number of functions that the DBMB8suto create, query, and modify tables.
For example, in Informix a virtual table scan can access #s@@atedWhere conditions, and therefore
can process selection conditions. However, the Informigrgurocessor gives no guarantees about join
ordering, even when virtual tables are involved, so we cabecure that the columns used to generate the
search expression are bound by the time the query proceg&®td scaiwWebPages or WebCount. Thus,
Informix currently cannot be used to implemefiebPages or WebCount (although, as mentioned earlier,
WebCount could be implemented as a user-defined scalar function,hagisupported in Informix).

www.manaraa.com

4 WSQ Query Processing

Even with an ideal virtual table interface, traditional exton of queries involvingvVebCount or WebPages
would be extremely slow due to many high-latency calls to @n@more Web search engines. As mentioned
in Section 2, [CDY95] proposes optimizations that can redie number of external calls, and caching
techniques [HN96] are important for avoiding repeated reekcalls. But these approaches can only go so
far—even after extensive optimization, a query involvilgbCount or WebPages must issue some number
of search engine calls.

In many situations, the high latency of the search enginedeihinate the entire execution time of the
WSQ query. Any traditional non-parallel query plan invelgiwebCount or WebPages will be forced to
issue Web searches sequentially, each of which could tak@@pmore seconds, and the query processor
is idle during each request. Since Web search engines atetd@upport many concurrent requests, a
traditional query processor is making poor use of availagsources.

Thus, we want to find a way to issue as many concurrent Weblsesaes possible during query process-
ing. While a parallel query processor (such as Oracle, mbor Gamma [DGS90], or Volcano [Gra90])
is a logical option to evaluate, it is also a heavyweight apph for our problem. For example, suppose a
query requires 50 independent Web searches (for 50 U.®&sstsdy). To perform all 50 searches concur-
rently, a parallel query processor must not only dynamygadirtition the problem in the correct way, it must
then launch 50 query threads or processes. Supporting mentWeb searches during query processing is
a problem of restricted scope that does not require a fulllEaiDBMS.

In the remainder of this section we descriémynchronous iteration, a new query processing technique
that can be integrated easily into a traditional non-pekajliery processor to achieve a high number of con-
current Web searches with low overhead. As we will discugfligrin Section 4.2, asynchronous iteration is
in fact a general query processing technique that can betadehdle a high number of concurrent calls to
any external sources. (In future work, we plan to compar@@spnous iteration against the performance
of a parallel query processor over a range of queries inmglwany calls to external sources.) As described
in the following subsections, asynchronous iteration alsens up interesting new query optimization prob-
lems.

4.1 Asynchronous Iteration

Let us start with an example. Suppose in our relational desmlbwe have a simple tabfgs(Name),
identifying the different ACM Special Interest Groups,ledl“Sigs"—e.g., SIGMOD, SIGOPS, etc. Now
we want to us&VebCount to rank the Sigs by how often they appear on the Web near thedeey'Knuth”:3

Select *

From Sigs, WebCount

Where Name = T1 and T2 = 'Knuth’
Order By Count Desc

3Incidentally, the results (in order) from AltaVista are:GACT, SIGPLAN, SIGGRAPH, SIGMOD, SIGCOMM, SIGSAM.
For all other SigsCountis 0.

www.manaraa.com

)

Sort:
WebCount.Count

—

" Devendent Join:)

Dependent Join:
Sigs.Name =)
WebCount.T1

= _J

Scan: EVScan:
Si s' WebCount
9 (T2 = 'Knuth')

Figure 2: Query plan fo8igs X WebCount

Figure 2 shows a possible query plan for this query. For thas,pand for all other plans in this paper,
we assume an iterator-based execution model [Gra93] wiaete @perator in the plan tree suppodpen,
GetNext, andClose operations. Th®ependent Join operator requires eadBetNext call to its right child to
include a binding from its left child, thus limiting the phgal join techniques that can be used to those of the
nested-loop variety (although work in [HN96] describeshiiag and caching techniques that can improve
performance of a dependent join). TB¥Scan operator is an external virtual table scan. We assume that
we are working with a query processor that can produce platigssosort—with dependent joins and scans
of virtual tables—such as IBM DB2 (recall Section 3.2).

Without parallelism, EVScan performs a sequence of Welckearduring execution of this query plan
(one for eachGetNext call), and the query processor may be idle for a second or ek time. Intuitively,
we would like the query processor to issue many Web searchrstaneously, without the overhead of a
parallel query processor. For this small data set—37 tufglethe 37 ACM Sigs—we would like to issue
all 37 requests at once. To achieve this behavior we prop®gechronous iteration, a technique involving
three components:

1. A modified, asynchronous version of EVScan that we ABVScan.

2. A new physical query operator call&#gSync (for “Request Synchronizer”), which waits for asyn-
chronously launched calls to complete.

3. A global software module calleBegPump (for “Request Pump”), for managing all asynchronous
external calls.

The general idea is that we modify a query plan to incorpaaaiechronous iteration by replacing EV-
Scans with AEVScans and inserting one or more ReqSync apsrappropriately within the plan. AEV-
Scan and ReqSync operators both communicate with the géa@Pump module. No other query plan
operators need to be modified to support asynchronousiderat

Now we walk through the actual behavior of asynchronousiiten using our example. Consider the
query plan in Figure 3. In comparison to Figure 2, the EVScas been replaced by an AEVScan, the
ReqgSync operator has been added, and the global RegPumgdis When tuples are constructed during
guery processing, we allow any attribute value to be markitlllavspeciaplaceholder that serves two roles:

1. The placeholder indicates that the attribute value (hod the tuple it's a part of) is incomplete.

10

www.manaraa.com

Sort:
WebCount.Count
—
ReqSync —_—
qsy -
\——
4] ReqPump Returned Calls
Dependent Join:
Sigs.Name => ‘f T T
WebCount.T1
o

Pending Calls

[] [C‘viﬁiiiiz] e

Sigs (T2 = 'Knuth’)

Figure 3: Asynchronous iteration

2. The placeholder identifies a pending RegPump call adsdcigith the missing value—that is, the
pending call that will supply the true attribute value whha tall finishes.

Recall that all of our operators, including AEVScan and RewgSobey a standard iterator interface, includ-
ing Open, GetNext, andClose methods. We now discuss in turn how the operators in our ebaquery
plan work.

The Scan and Sort operators are oblivious to asynchronersidn. The Dependent Join (hereafter DJ)
is a standard nested-loop operator that also knows nottiagtasynchronous iteration. Now consider the
AEVScan. When DJ gets a new tuple fra@iys, it calls Open on AEVScan and then callSetNext with
Sigs.Name. AEVScan in turn contacts RegPump and registers an exteatlal’ with T1 = Sigs.Name and
T2 ="Knuth'. (C'is a unique identifier for the call.) RegPump is a module thsiés asynchronous network
requests and stores the responses to each request as tivay tatthe case of call’, the returned data
is simply a value forCount; ReqPump stores this value in a hash taRégPumpHash, keyed onC. To
achieve concurrency, as soon as AEVScan registers its ¢hlRegPump, it returns to DJ (as the result of
GetNext) oneWebCount tuple T" where theCount attribute contains as a placeholder the call identifier
DJ combined” with Sigs.Name and returns the new tuple to its parent (ReqSync).

Now let us consider the behavior of ReqSync. WherOpen method is called from above by Sort,
ReqSync call©pen on DJ below and then callSetNext on DJ until exhaustion, buffering all returned (in-
complete) tuples inside ReqSync. We choose this full-buieimplementation for the sake of simplicity,
and we will revisit this decision momentarily. ReqSync retmcoordinate with RegPump to fill in place-
holders before returning tuples to its parent. The probkeanariation of the standard “producer/consumer”
synchronization problem. Each ReqPump call is a produckernva callC’ completes (and its data is stored
in RegPumpHash), RegPump signals to the consumer (Reg8watdhe data foC” is available. When
signaled by RegPump, ReqSync locates the incomplete toplaioingC’ as a placeholder (using its own
local hash table), and replacé8 with the Count value retrieved from RegPumpHash. When ReqSync's
GetNext method is called from above, if ReqSync has no completecsuiien it must wait for the next

11

www.manaraa.com

signal from ReqPump before it can return a tuple to its pariote that in the general case, tuples that do
not depend on pending RegPump calls may pass directly thralReqSync operator.

In our simple implementation of ReqSyn&pen method, all (incomplete) tuples generated by DJ are
buffered inside ReqSync before ReqSync can return any (etet)) tuples to its parent. In the case of
very large joins it might make sense for ReqSync to make cetagltuples available to its parent before
exhausting execution of its child subplan. As with querycexi®n in general, the question of materializing
temporary results versus returning tuples as they becomitabie is an optimization issue [GMUWOO].

As we will show in Section 5, asynchronous iteration can iowprWSQ query performance by a factor
of 10 or more over a standard sequential query plan. Howtvere are still three important lingering issues
that we will discuss in Sections 4.3, 4.4, and 4.5, respelgtiv

1. As seen in our example, an external call\ffggbCount always generates exactly one result tuple. But
a call forwebPages may produce any number of tuples, including none, and thebeuwf generated
tuples is not known until the call is complete.

2. When a query plan involves more than one AEVScan, we musiuat for the possibility that an
incomplete tuple buffered in RegSync could contain platgdrs for two or more different pending
RegPump calls.

3. We need to properly place ReqSync operators in relatiather query plan operators, both to guar-
antee correctness and maximize concurrency.

Monitoring and controlling resource usage is also an ingrarissue when we use asynchronous iter-
ation. So far we have assumed that during query executionawesafely issue an unbounded number of
concurrent search requests. Realistically, we need tdatgihe amount of concurrency to prevent a search
engine from being inundated with an “unwelcome” number afidtaneous requests. Similarly, we may
want to limit the total number of concurrent outgoing redads prevent WSQ from exhausting its own
local resources, such as network bandwidth. It is quite Ertgpmodify ReqPump to handle such limits:
we need only add one counter to monitor the total number afeactquests, and one counter for each ex-
ternal destination. An administrator can configure eacmtsuas desired. When a call is registered with
RegPump but cannot be executed because of resource lingitsall is placed on a queue. As resources free
up, queued calls are executed.

4.2 Applicability of asynchronousiteration

Before delving into details of the three remaining techhissues outlined in the previous subsection, let
us briefly consider the broader applicability of asynchumderation. Although this paper describes asyn-
chronous iteration in the specific context of WSQ, the teghaiis actually quite general and applies to most
situations where queries depend on values provided by laighcy, external sources. More specifically, if

an external source can handle many concurrent requesftsa query issues independent calls to many dif-
ferent external sources, then asynchronous iterationgeoppate. Our WSQ examples primarily illustrate

the first case (many concurrent requests to one or two seagihes). As an example of the second case,

12

www.manaraa.com

)

ReqSync

— k_?%&‘\\\\“

Dependent Join:

Sigs.Name => RegPump
WebPages.T1
_ 9 J

(=)(&=) ===
(Rank <= 3)

Figure 4: Query plan foBigs X WebPages

asynchronous iteration could be used to implement a Webleragiven a table of thousands of URLSs, a
query over that table could be used to fetch the HTML for eaBt. ((for indexing and to find the next round
of URLS). In this scenario, WSQ can exploit all availableowses without burdening any external sources.

As mentioned earlier, if we try to use a parallel query preoeso achieve the high level of concurrency
offered by asynchronous iteration, then we would need tditjger tables dynamically into many small
fragments and spawn many query threads or processes.dsgainy threads can be expensive. For example,
the highest performance Web servers do not use one thredtiifét request; rather, many network requests
are handled asynchronously by an event-driven loop witlsimgle process [PDZ99]. By implementing the
RegPump module of asynchronous iteration in a similar mamwe can enable many simultaneous calls
with low overhead. Nonetheless, as future work we plan taloohexperiments comparing the performance
of asynchronous iteration against a parallel DBMS for mamgagoncurrent calls to external sources.

4.3 ReqSynctuple generation or cancellation

The previous example (Figure 3) was centered on a depencientvith WebCount, which always yields
exactly one matching tuple. BWebPages, and any other virtual table in general, may return any nurabe
tuples for given bindings—including none. Because we wdtWVAcan to return from &etNext call without
waiting for the actual results, we always begin by assumiivag €xactly one tuple joins, then “patch” our
results in ReqSync.

Consider the following query, which retrieves the top 3 URdseach Sig.

Select *
From Sigs, WebPages
Where Name = T1 and Rank <=3

For each Sig, joining wittWebPages may generate 0, 1, 2, or 3 tuples. Assume a simple query plan as
shown in Figure 4. As in our previous example, AEVScan wi iieqPump to generate 37 search engine
calls, and RegSync will initially buffer 37 tuples. Now calesr what happens for a tuplg, waiting in a
ReqSync buffer for a call’ to complete. Whel® returns, there are three possibilities:

1. If C returns no rows, then ReqSync deleféfrom its buffer.

13

www.manaraa.com

)

ReqSync

— e

Dependent Join:

Sigs.Name =» RegPump
WP_Google.T1
e

Dependent Join: AEVScan: /
Sigs.Name = WP_Google _——
WP_AV.T1 (Rank <= 3)
Scan: AEVScan:
o WP_AV
Sigs -
(Rank <= 3)

Figure 5: Query plan foBigs X WebPages_AV X WebPages_Google

2. If C'returns 1 row, then ReqSync fills in the attribute valuesifas generated bg'.
3. If C returnsn rows, wheren > 1, then ReqSync dynamically creates- 1 additional copies of’,
and fills in the attribute values accordingly.

In our example, since all Sigs are mentioned on at least 3 \&Wgbyy 111 tuples are ultimately produced by
ReqSync.

4.4 Handling multiple AEV Scans

Now let us consider query plans involving multiple AEVScaRsr example, the following query finds the
top 3 URLs for each Sig from two different search engites.

Select *
From Sigs, WebPages_AV AV, WebPages_Google G,
Where Name = AV.T1 and Name = G.T1 and AV.Rank <=3 and G.Rank <=3

Figure 5 shows a query plan that maximizes concurrent resjuddote that there is only one ReqSync
operator, not one for each AEVScan. The placement and nteafiReqSync operators is discussed in Sec-
tion 4.5. In this plan, the bottom Dependent Join will geteB¥ tuples, each with placeholders identifying
a RegPump call fowvebPages_AV. The upper join will augment each of these tuples with adddl place-
holders corresponding to a ReqPump calMabPages_Google. Hence, ReqSync will buffer 37 incomplete
tuples, each one with placeholders for two different Regp aalls.

The algorithm for tuple cancellation, completion, and gatien at the end of Section 4.3 applies in
this case as well, with a slight nuance: dynamically copigalets (case 3 in the algorithm) may proliferate
references to pending calls. For example, suppose one ai¢chmplete tuple§” in the ReqSync buffer is

“The query actually finds all combinations of the top 3 URLsrfreach search engine, but it nonetheless serves to
illustrate the point of this section.

14

www.manaraa.com

waiting for the completion of two calls, indicated by twofdifent placeholders: one for céll4 to AltaVista
and the other for call’; to Google. IfC 4 returns first, with 3 tuples, then ReqSync will make two addgl
copies ofT". When copyindl’, references to pending call; are also copied. Ona@ returns, all tuples
referencingCs must be updated.

45 Query plan generation

Recall that converting a query plan to use asynchronouatiber has two parts: (1) EVScan operators are
converted to AEVScans, and (2) ReqSync operators are addtuktplan. In this section we describe
an algorithm for placing RegSync operators within plans.r @imary goal is to introduce a correct and
relatively simple algorithm that: (1) attempts to maximie number of concurrent Web searches; (2)
attempts to maximize the amount of query processing workdha be performed while waiting for Web
requests to be processed; and (3) is easy to integrate irsiingxquery compilers. ReqSync operators can
significantly alter the cost of a query plan, and the effectgjoery execution time will often depend on the
specific database instance being queried, as well as thiésresturned by search engines. Fully addressing
cost-based query optimization in the presence of asynocliteration is an important, interesting, and
broad problem that is beyond the scope of this paper. Wedrt@focus on optimization in future work.

We assume that the optimizer can generate plans with depejades [FLMS99] and EVScans, but
knows nothing about asynchronous iteration; a plan pradibgethe optimizer is the input to our algorithm.
We continue to assume an iterator model for all plan opesatd¥e now describe the three steps in our
placement of ReqSync operatotasertion, Percolation, andConsolidation.

451 RegSynclnsertion

Recall that we first convert each EVScan operator in our ipaut P to an asynchronous AEVScan. Next,
a ReqSync operator is inserted directly above each AEVS3dare formally, for each AEVScann P, we
insert ReqSyngdnto P as the parent of AEVScanThe previous parent of AEVScahbecomes the parent of
ReqgSyne. This transformation is obviously correct since no operatioccur between each asynchronous
call and the blocking operator that waits for its completion

452 RegSync Percolation

Next, we try to move ReqSync operators up the query plan.itiveely, each time we pull up a ReqSync
operator we are increasing the amount of query processing that can be done before blocking to wait
for external calls to complete. Sometimes we can rewritejtiexy plan slightly to enable ReqSync pull-up.
For example, if the parent of a ReqSync is a selection preglitat depends on attribute values filled in by
ReqgSync, we can pull ReqSync higher by pulling the selegiredicate up first. Similarly, if a join depends
on values filled in by ReqSync, we can rewrite the join as actiele over a cross-product and move the
ReqgSync above the cross-product.
Our actual algorithm is based on the notion of an oper@torashing with a ReqSync operator, in which

case we cannot pull ReqgSync abavelet ReqSyng A denote the set of attributes whose values are filled

15

www.manaraa.com

in by the RegSyncoperator as ReqPump calls complete, i.e., the attributesevikialues are substituted
with placeholders by AEVScanWe say thatD clashes with ReqSyng¢iff:

1. O depends on the value of any attribute in ReqSyfcor
2. O removes any attribute in ReqSyn4 via projection, or
3. O is an aggregation or existential operator

Case 1 is clear: an operator clashes if it needs the attabilted in by ReqSyngcto continue processing.
Case 2 is a bit more subtle. If we project away placeholdefsrégahe corresponding calls are complete,
then tuple cancellation or generation (Section 4.3) cataia place properly, and extra tuples or incorrect
numbers of duplicates may be returned. Case 3 is similard®e 2aaggregation (e.g., Count) and existential
guantification require an accurate tally of incoming tuples

For each ReqSynan the plan, we repeatedly pull ReqSyrabove any non-clashing operators. If an
operatorO does clash, we check to sedlfis a projection or selection; if so, we can pallabove its par-
ent first. Otherwise, i is a clashing join, we rewrite it as a selection over a crasshpct. Other similar
rewrites are possible. For example, a set union operatot exasnine each complete tuple to perform dupli-
cate elimination; we can rewrite this clashing operator &edect Distinct” over a non-clashing bag union
operator. Our percolation algorithm clearly terminatessioperators are only pulled up the plan. Also, the
order in which we percolate ReqSync operators does not mdtitee only potential effect is a different final
ordering between adjacent ReqSync operators, somethahgstimade irrelevant by ReqSync Consolidation,
which we discuss next. We will illustrate the percolatiogalthm through examples momentarily.

453 RegSync Consolidation

After percolation, we may find that two or more ReqSync omertre now adjacent in the plan. At this

point we can merge adjacent ReqSync operators since th&ympethe same overall function, and a single

ReqSync operator can manage multiple placeholder valuagplas as discussed in Section 4.4. When
merging ReqSynaowith ReqSyng, ReqSyng. A U ReqSyng.A is the set of attributes that must be filled in

by the new ReqSync operator.

45.4 Plan generation examples

We now show three examples demonstrating our ReqSync pttestgorithm. We point out the perfor-
mance gains asynchronous iteration can provide, alongswitie potential pitfalls of our current algorithm.

Example 1. Figure 6 shows how our ReqSync placement algorithm geeethe query plan we saw earlier

in Figure 5 for theSigs X WebPages_AV X WebPages_Google query. We omit ReqPump from these (and all
remaining) query plans. Figure 6(a) shows the input to tgerathm, a simple left-deep query plan without
asynchronous iteration. Figure 6(b) shows the plan aftegSyec Insertion: the EVScans are converted to
AEVScans and a ReqSync operator is inserted directly abaste EVScan. Figure 6(c) shows the plan after
ReqgSync Percolation. We first move ReqSyabove both dependent joins, since neither join depends on
any values returned byebPages_AV (i.e., URL, Date, Rank). RegSyng is then pulled above its parent

16

www.manaraa.com

Dependent Join:
Sigs.Name =
WP_Google.T1

Dependent Join: EVScan_2:
Sigs.Name = WP_Google
WP_AV.T1 (Rank <= 3)

Dependent Join:
Sigs.Name =
WP_Google.T1

' ReqSync_2 '

Dependent Join: AEVScan_2:
Sigs.Name = WP_Google
WP_AV.T1 (Rank <= 3)

Scan: EVScanil
Si s. WP_AV
9 (Rank <= 3)

Scan:
Sigs J (ReqSync_1]

@

)

ReqSync_1

——

ReqSync_2

(Dependent Join: ‘\

Sigs.Name =
\WP_Google.T1 /

Dependent Join: AEVScan_2:
Sigs.Name = WP_Google
WP_AV.T1 (Rank <= 3)

Scan: AEVScan_1:
Sias WP_AV
9 (Rank <= 3)

(©

AEVScan_1:

WP_AV
(Rank <= 3)

(b)

ReqSync

Dependent Join:
Sigs.Name =
WP_Google.T1

Dependent Join: AEVScan_2:
Sigs.Name = WP_Google
WP_AV.T1 (Rank <= 3)

Scan: AEVScan_1:
Sias WP_AV
9 (Rank <= 3)

(d)

Figure 6: Generating the query plan feigs X WebPages_AV X WebPages_Google in Figure 5

17

www.manharaa.com

dependent join. The final plan after ReqgSync Consolidatsoshiown in Figure 6(d). With this plan, the
query processor can process all 74 external calls (37 Sigsip¢ concurrently.

This example demonstrates some interesting advantagesyméteonous iteration over possible alter-
natives. First, one might consider simply modifying the elegent join operator to work in parallel: change
the dependent join to launch many threads, each one fongiome left-hand input tuple with the right-hand
EVScan. While this approach will provide maximal concumgfior many simple queries, it prevents con-
currency among requests from multiple dependent joinsqtiexy processor will block until the first join
completes. Another approach, as discussed in Sectiors4®use a (modified) parallel query processor for
this query. However, performing both dependent joins iraf)@rrequires a nontrivial rewrite to transform
our 2-join plan into a 3-join plan where both dependent j@rechildren of a final “merging” join.O

Example 2: Consider the following query, where a cross-product witheaningless tablr is introduced
for illustrative purposes:

Select *
From Sigs, WebCount_AV AV, R, WebCount_Google G
Where Name = AV.T1 and Name = G.T1

Figure 7(a) shows the result of running our ReqSync placeéralgorithm over a left-deep input plan in
which the cross-product witR is performed between the two virtual table dependent jaivigh or without
asynchronous iteration, this input plan is problematic: pgyforming the cross-product before the join
with WebCount_Google, a straightforward dependent join implementation will @¢R| identical calls to
Google for each Sig. Thus, incorporating a local cache afcbeangine results is very important for such a
plan. Furthermore, when using asynchronous iteration thighplan in Figure 7(a), the cross-product with
tableR will generate|R| copies of the incomplete tuples frowiebCount_AV that must be buffered and then
patched by ReqSync. Depending on the data, it may be prédarabse two ReqSync operators as shown in
Figure 7(b). By doing so, we reduce the total number of attelvalues to be patched Isigs|- (|R|—1), or
roughly a factor of 2 for reasonably largee|. On the down side, we will block after the first join, prevefi
us from concurrently issuing the Web requests\i@bCount_Google. Had the cross-product witR been
placed last in the original input plan, another alternatixgild be to place a single ReqSync operator above
the dependent joins but below the cross-product.

This contrived example serves to illustrate the challeggjuery optimization problems that arise when
we introduce AEVScan and ReqSync operators. Still, in mases our simple ReqSync placement algo-
rithm does perform well, as we will see in Section 5l

Example 3: As a final example suppose that we also have a tabBleields(Name) containing computer
science fields (e.qg., “databases”, “operating systemstifitaal intelligence”, etc.). Consider the following
query, which finds URLSs that are among the top 5 URLSs for botigea8d a CSField.

Select S.URL

From Sigs, WebPages S, CSFields, WebPages C
Where Sigs.Name = S.T1 and CSFields.Name = C.T1 and S.Rank <=5 and

C.Rank <=5 and S.URL = C.URL

18

www.manaraa.com

)

ReqSync

——

ependent Join:
Sigs.Name =>

)

ReqSync

Dependent Join:
Sigs.Name =

WC_Google.T1 WC_Google.T1
N —9e

o
AEVScan: AEVScan:
Cross-Product] [WC._Google Cross-Product] [WC._Google
Dependent Join: .
. Scan:
Sigs.Name => Sc;n. RegSync R

WC_AV.T1

Scan: AEVScan:
Sigs WC_AV

Dependent Join:
Sigs.Name =
WC_AV.T1

Scan: AEVScan:
Sigs WC_AV

@) (b)

Figure 7: A query plan mixing two dependent joins with a crpssduct

19

www.manharaa.com

Select:
S.URL=
C.URL

ReqSync

4 Dependent Join: Dependent Join: h
‘ Sigs.Name => ‘ CSFields.Name => ‘ ‘ Cross-Product ‘
S.T1 C.T1
.
Scan: N EVScan: 4 Scan: 4 EVScan: N Dependent Join: N 4 Dependent Join:
o WebPages S . WebPages C Sigs.Name => CSFields.Name =
Sigs (Rank <= 5) CSFields (Rank <= 5) S.T1 cTL
AN AN 1% : / - :

Scan: AEVScan: Scan: AEVScan:
Si s. WebPages S CSFieI(;is WebPages C
9 (Rank <= 5) (Rank <= 5)

(@) (b)

Figure 8: Generating the query plan for query o8&ys andCSFields

An input query plan is shown in Figure 8(a). Note that the ingan is bushy, and the join at the the root of
the plan may well be implemented as a sort-merge or hashAdiar inserting the two ReqSync operators,
we first pull them above the dependent joins. To pull the RegSwabove the upper join, we rewrite the join
into a selection over a cross-product, as described in@edtb.2. (Because the join depends on attributes
supplied by WebPages, we can’t pull the ReqSync above ibwitthe rewrite.) Figure 8(b) shows the final
plan.

In this query, given that th8igs and CSFields tables are tiny, rewriting the join as a cross-product is
a big performance win: it enables the query processor toutesl external calls (from both the left and
right subplans) concurrently. However, in other situagiosuch as if the cross-product is huge, this specific
rewrite could be a mistake.

This example illustrates one more important issue. Suppusea Sig does not have any URLs on a
given search engine. Indeed, assume for the moment thagalh&ve no URLSs, so all Sig tuples generated
will ultimately be canceled. In that case, pulling the RegSyperator up as in Figure 8(b) results in an
unnecessary cross-product between placeholder tupledSeields and WebPages, since ultimately the
cross-product (and therefore the join) will be empty. In gemeral case, because AEVScan always returns
exactly one matching tuple before the final result is knowplaa could perform unnecessary work—work
that would not be done if the query processor waited for the Web search result before continuingl

To summarize, the above examples demonstrate how our Reg8gcement algorithm focuses on
maximizing the number of concurrent external calls for amen query plan. If external calls dominate
query execution time, then asynchronous iteration canigeodramatic performance improvements, as

20

www.manaraa.com

we demonstrate in Section 5. Nevertheless, there are $ga@emtial performance pitfalls that are best
addressed by a complete cost-based query optimizer inainpg asynchronous iteration:

e Manipulating query plans to use asynchronous iteration chayge their relative performance. Given
two equivalent input planst and B, whereCost(A) < Cost(B), there is no guarantee that the
asynchronous version of will remain cheaper than the asynchronous versiom of

e The ReqSync operator buffers tuples, possibly prolifersitem, and fills in missing attribute values.
In some situations it is possible that the amount of work ireguby ReqSync offsets the advantages
of asynchronous iteration.

e Asynchronous iteration assumes non-empty join resultscamtinues processing, patching results
later as necessary. If join results do turn out to be empgn tur “optimistic” approach will have
performed more work than necessary.

¢ In order to pull ReqSync operators higher, we may move oritevaperators in the input query plan,
such as replacing joins with selections over cross-pradudditional work induced by these rewrites
could offset the benefit of additional concurrency.

5 Implementation and Experiments

We have integrated the two WSQ virtual tables and our asypmeius iteration technique into a homegrown
relational database management system cdtkmtbase. (Redbase is constructed by students at Stanford
in a course on DBMS implementation.) Redbase supports &sob$QL for select-project-join queries,
and it includes a page-level buffer and iterator-based ygegecution. However, it was not designed to
be a high-performance system: the only available join teglenis nested-loop join, and there is no query
optimizer although users can specify a join ordering mapublevertheless, Redbase is stable and sophis-
ticated enough to support the experiments in this sectitwigiwdemonstrate the potential of asynchronous
iteration. Our experiments show the considerable perfasaamprovement of running WSQ queries with
asynchronous iteration as opposed to conventional saqugetation.

Measuring the performance of WSQ queries has some inheitficulties. First, performance of a
search engine such as AltaVista can fluctuate consideraggraling on load and network delays beyond
our control. Second, because of caching behavior beyonccanirol, repeated searches with identical
keyword expressions may run far faster the second (and gubsg times. To mitigate these issues, we
waited at least two hours between queries that issue iddsgarches, which we verified empirically is long
enough to eliminate caching behavior. Also, we performedesxperiments late at night when the load on
search engines is low and, more importantly, consistent.

In order to run many experiments without waiting hours betweach one, we udemplate queries
and instantiate multiple versions of them that are stradiyisimilar but result in slightly different searches
being issued. Consider the following template.

21

www.manaraa.com

‘ H Synchronous (secs{) Asynchronous (secs{) Improvement

Template 1
Run 1 (8 queries) 23.13 3.88 6.0x
Run 2 (8 other queries 32.8 3.5 9.4x
Template 2
Run 1 (8 queries) 70.75 5.25 13.5x
Run 2 (8 other queries 64.25 5.13 12.5x
Template 3
Run 1 (8 queries) 122.5 6.25 19.6x
Run 2 (8 other queries 76.13 4.63 16.4x

Table 1: Experimental results

Template 1:

Select Name, Count
From States, WebCount
Where Name = T1 and WebCount.T2 = V1

V1 represents a constant that is chosen from a pool of diffesemtmon constants, such as “computer”,
“beaches”, “crime”, “politics”, “frogs”, etc. For our expinents, we created 8 instances of the template
by choosing 8 different constants from the pool. After tigmall queries using asynchronous iteration, we
waited two hours and then timed all queries using the stahdaery processor. For corroboration, we
repeated the test with 8 new query instances.

The results for this template (and the two below) are showrainle 1. For each template, we list the
results of two runs. The times listed are the average exattitne in seconds for the 8 queries, with and
without asynchronous iteration. AltaVista is used for thstfiwo templates; the third uses both AltaVista
and Google. Experiments were conducted on a Sun Sparc 2fax 200Mhz) 256MB RAM machine
running SunOS 5.6. The computer is connected to the Intgfa&tanford University’s network.

Template 2:

Select Name, Count, URL, Rank
From States, WebCount, WebPages
Where Name = WebCount.T1 and WebCount.T2 = V1 and
Name = WebPages.T1 and WebPages.T2 = V2 and WebPages.Rank <=2

In this query template, we issue two searches for each tupkates, one forwebCount and one for
WebPages. When instantiating the template we wanted to ensure\that V2, so we selected 16 distinct
constants to create 8 query instances. In our prototypemsyshe join order is always specified by the order
of tables in theFrom clause, so for this query we joine&iates with WebCount, then joined the result with
WebPages. Results are shown in Table 1.

22

www.manaraa.com

Template 3: The following template is similar to the example in Sectibd (Figure 5), with the added
constantvl. Again, we created 8 queries by instantiativiy with constants, and results are shown in
Table 1.

Select Name, AV.URL, G.URL

From Sigs, WebPages_AV AV, WebPages_Google G,

Where Name = AV.T1 and Name = G.T1 and AV.Rank <= 3 and G.Rank <= 3 and
AV.T2=V1and G.T2=V1

Our results show clearly that asynchronous iteration caprave the performance of WSQ queries
by a factor of 10 or more. Of course, all of the example quenie® are over very small local tables, so
network costs dominate. These results in effect illustitaebest-case improvement offered by asynchronous
iteration. For queries involving more complex local querggessing over much larger relations, the speedup
may be less dramatic, and the results of any such experinmiritue highly dependent on the sophistication
of the database query processor (independent of asynaisatepation). Further, as illustrated in Section 4,
complex queries may introduce optimization decisions toatd have a significant impact on performance.
In future work we plan a comprehensive study of query optatian incorporating asynchronous iteration,
including additional experiments and performance congpas to alternate approaches such as parallel
guery processing.

We have created a simple interface that allows users to poged queries over our WSQ implementa-
tion. Please visit http://www-db.stanford.edu/wsq.

Acknowledgments

We thank Serge Abiteboul for his contributions to early WBQQ discussions, and Jason McHugh for
helpful comments on an initial draft of this paper. We alsanth Berthold Reinwald and Paul Brown for
information about IBM DB2 and Informix, respectively.

References
[Abi97] S. Abiteboul. Querying semistructured data. MPnoceedings of the International Conference on
Database Theory, Delphi, Greece, January 1997.

[AK97] N. Ashish and C.A. Knoblock. Wrapper generation f@ns-structured internet source8lGMOD
Record, 26(4):8-15, 1997.

[BT98] P. Bonnet and A. Tomasic. Partial answers for unaidd data sources. Proceedings of the Third
International Conference on Flexible Query Answering Systems (FQAS), pages 43-54, Roskilde, Den-
mark, May 1998.

[Bun97] P. Buneman. Semistructured data.Phoceedings of the Sixteenth ACM S GACT-SSGMOD-S GART
Symposiumon Principles of Database Systems, pages 117-121, Tucson, Arizona, May 1997. Tutorial.

[CDSS98] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Yoedliators need data conversion! Rroceed-
ings of the ACM SSIGMOD International Conference on Management of Data, pages 177-188, Seattle,
Washington, June 1998.

23

www.manaraa.com

[CDY95]

[CGK89]

[CGMH*94]

[DFF+99]

[DGS*90]

[DM97]

[FLMS99]

[GMUWOO]

[GMW99]

[Gra90]

[Gra93]

[HGMC*97]

[HKWY97]

[HN96]

[IBM]

[KS95]

S. Chaudhuri, U. Dayal, and T. Yan. Join queries witternal text sources: Execution and optimization
techniques. IrProceedings of the ACM SIGMOD International Conference on Management of Data,
pages 410-422, San Jose, California, 1995.

D. Chimenti, R. Gamboa, and R. Krishnamurthy. Ta¥gzan open architecture for LDL. Proceedings
of the Fifteenth International Conference on Very Large Data Bases, pages 195-203, Amsterdam, The
Netherlands, August 1989.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland®apakonstantinou, J. Ullman, and J. Widom.
The Tsimmis project: Integration of heterogeneous infdramasources. IfProceedings of 100th An-
niversary Meeting of the Information Processing Society of Japan, pages 7—18, Tokyo, Japan, October
1994,

A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D.i&ucA query language for XML. In
Proceedings of the Eighth International World Wde Web Conference (WMWW8), Toronto, Canada, 1999.

D.J. DeWitt, S. Ghandeharizadeh, D.A. Schneider, Aclga, H.l. Hsiao, and R. Rasmussen. The
Gamma database machine projd@EE Transactions on Knowledge and Data Engineering, 2(1):44—
62, 1990.

S. Dessloch and N. Mattos. Integrating SQL databag#s content-specific search engines. Rro-
ceedings of the Twenty-Third Internatial Conference on Very Large Databases, pages 276-285, Athens,
Greece, August 1997.

D. Florescu, A. Levy, |. Manolescu, and D. Suciu.epuoptimization in the presence of limited access
patterns. InProceedings of the ACM SSGMOD International Conference on Management of Data,
pages 311-322, Philadelphia, Pennsylvania, June 1999.

H. Garcia-Molina, J.D. Ullman, and J. Widoratabase System Implementation. Prentice Hall, Upper
Saddle River, New Jersey, 2000.

R. Goldman, J. McHugh, and J. Widom. From semistited data to XML: Migrating the Lore
data model and query language. Rroceedings of the 2nd International Workshop on the Web and
Databases (WebDB ' 99), pages 25-30, Philadelphia, Pennsylvania, June 1999.

G. Graefe. Encapsulation of parallelism in the ¥plc query processing system.Rroceedings of the
ACM S GMOD International Conference on Management of Data, pages 102—-111, Atlantic City, New
Jersey, May 1990.

G. Graefe. Query evaluation techniques for largalksses ACM Computing Surveys, 25(2):73-170,
1993.

J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and As@oe Extracting semistructured information
from the Web. InProceedings of the Workshop on Management of Semistructured Data, pages 10-17,
Tucson, Arizona, May 1997.

L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Ofling queries across diverse data sources.
In Proceedings of the Twenty-Third Internatial Conference on Very Large Databases, pages 276285,
Athens, Greece, August 1997.

J.M. Hellerstein and J.F. Naughton. Query executashniques for caching expensive methods. In
Proceedings of the ACM SSGMOD International Conference on Management of Data, pages 423-434,
Montreal, Canada, June 1996.

IBM DB2 Universal Database SQL Reference Version &:ftftp.software.ibm.com/ps/products/db2/
info/vr6/pdf/letter/db2s0e60.pdf.

D. Konopnickiand O. Shmueli. W3QS: A query systemtfar World Wide Web. IProceedings of the
Twenty-First International Conference on Very Large Data Bases, pages 54—65, Zurich, Switzerland,
September 1995.

24

www.manaraa.com

[LRO96]

[MMMO97]

[Mor88]

[PDZ99]

A. Levy, A. Rajaraman, and J. Ordille. Querying heeneous information sources using source
descriptions. IProceedings of the Twenty-Second International Conference on \ery Large Databases,
pages 251-262, Bombay, India, September 1996.

A.O. Mendelzon, G. Mihaila, and T. Milo. Queryingé&hworld Wide Web.International Journal on
Digital Libraries, 1(1):54—67, April 1997.

K.A. Morris. An algorithm for ordering subgoals inAL! In Proceedingsof the Seventh ACM SIGACT-
SIGMOD-S GART Symposiumon Principles of Database Systems, pages 82—88, Austin, Texas, 1988.

V. Pai, P. Druschel, and W. Zwaenepoel. Flash: Arieffit and portable web server. Bnoceedings of
the USENIX 1999 Annual Technical Conference, Monterey, CA, June 1999.

[PGGMU95] Y. Papakonstantinou, A. Gupta, H. Garcia-Majiaad J. Ullman. A query translation scheme for rapid

[PGMW95]

[RAH*96]

[RP98]

[RS97]

[RSU95]

[SBHO8]

[Unios]

[XML97]

[YLGMU99]

implementation of wrappers. IRroceedings of the Fourth International Conference on Deductive and
Object-Oriented Databases, pages 161-186, Singapore, December 1995.

Y. Papakonstantinou, H. Garcia-Molina, and J. &id Object exchange across heterogeneous infor-
mation sources. |RProceedings of the Eleventh International Conference on Data Engineering, pages
251-260, Taipei, Taiwan, March 1995.

M.T. Roth, M. Arya, L.M. Haas, M.J. Carey, W.F. Cody, Rgika P.M. Schwarz, J. Thomas Il, and
E.L. Wimmers. The Garlic project. IRroceedings of the ACM SGMOD International Conference on
Management of Data, page 557, Montreal, Canada, June 1996.

B. Reinwald and H. Pirahesh. SQL open heterogendiasattaess. IProceedings of the ACM S G-
MOD International Conference on Management of Data, pages 506-507, Seattle, Washington, June
1998.

M.T. Roth and P.M. Schwarz. Don't scrap it, wrap it! Aapper architecture for legacy data sources.
In Proceedings of the Twenty-Third Internatial Conference on Very Large Databases, pages 266-275,
Athens, Greece, August 1997.

A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answeringiges using templates with binding patterns. In
Proceedings of the Fourteenth ACM S GACT-S GMOD-S GART Symposium on Principles of Database
Systems, pages 105-112, San Jose, California, May 1995.

M. Stonebraker, P. Brown, and M. Herbach. Interapdity, distributed applications and distributed
databases: The virtual table interfac@ata Engineering Bulletin, 21(3):25-33, 1998.

United States Bureau of the Census. State popul&stimates and demographic components of pop-
ulation change: July 1, 1997 to July 1, 1998. http://wwwstengov/ population/estimates/state/st-98-
1.txt, December 1998.

World Wide Web Consortium. Extensible markup larage (XML). http://www.w3.org/ TR/WD-xml-
lang-970331.html, December 1997.

R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullma@ptimizing large join queries in mediation systems.
In Proceedings of the I nternational Conferenceon Database Theory (ICDT), pages 348—364, Jerusalem,
Israel, January 1999.

25

www.manaraa.com

