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Abstract

We present WSQ/DSQ (pronounced “wisk-disk”), a new approach for combining the query facilities
of traditional databases with existing search engines on the Web. WSQ, forWeb-Supported (Database)
Queries, leverages results from Web searches to enhance SQL queriesover a relational database. DSQ,
for Database-Supported (Web) Queries, uses information stored in the database to enhance and explain
Web searches. This paper focuses primarily on WSQ, describing a simple, low-overhead way to sup-
port WSQ in a relational DBMS, and demonstrating the utilityof WSQ with a number of interesting
queries and results. The queries supported by WSQ are enabled by two virtual tables, whose tuples
represent Web search results generated dynamically duringquery execution. WSQ query execution may
involve many high-latency calls to one or more search engines, during which the query processor is
idle. We present a lightweight technique calledasynchronous iteration that can be integrated easily into
a standard sequential query processor to enable concurrency between query processing and multiple
Web search requests. Asynchronous iteration has broader applications than WSQ alone, and it opens up
many interesting query optimization issues. We have developed a prototype implementation of WSQ by
extending a DBMS with virtual tables and asynchronous iteration; performance results are reported.

1 Introduction

Information today is decidedly split between structured data stored in traditional databases and the huge

amount of unstructured information available over the World-Wide Web. Traditional relational, object-

oriented, and object-relational databases operate over well-structured, typed data, and languages such as

SQL and OQL enable expressive ad-hoc queries. On the Web, millions of hand-written and automatically-

generated HTML pages form a vast but unstructured amalgamation of information. Much of the Web data

is indexed by search engines, but search engines support only fairly simple keyword-based queries.

In this paper we propose a new approach that combines the existing strengths of traditional databases and

Web searches into a single query system.WSQ/DSQ (pronounced “wisk-disk”) stands forWeb-Supported

(Database) Queries/Database-Supported (Web) Queries. WSQ/DSQ is not a new query language. Rather,

it is a practical way to exploit existing search engines to augment SQL queries over a relational database

(WSQ), and for using a database to enhance and explain Web searches (DSQ). The basic architecture is

shown in Figure 1. Each WSQ/DSQ instance queries one or more traditional databases via SQL, and

keyword-based Web searches are routed to existing search engines. Users interacting with WSQ/DSQ can

pose queries that seamlessly combine Web searches with traditional database queries.
∗This work was supported by the National Science Foundation under grant IIS-9811947 and by NASA Ames under

grant NCC2-5278.
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Figure 1: Basic WSQ/DSQ architecture

As an example of WSQ (Web-Supported Database Queries), suppose our local database has information

about all of the U.S. states, including each state’s population and capital. WSQ can enhance SQL queries

over this database using Web search engines to pose the following interesting WSQ queries (fully specified

in Section 3.1):

• Rank all states by how often they are mentioned by name on the Web.

• Rank states by how often they appear, normalized by state population.

• Rank states by how often they appear on the Web near the phrase“four corners”.

• Which state capitals appear on the Web more often than the state itself?

• Get the top two URLs for each state.

• If Google and AltaVista both agree that a URL is among the top 5URLs for a state, return the state

and the URL.

WSQ does not perform any “magic” interpretation, cleaning,or filtering of data on the Web. WSQ enables

users to write intuitive SQL queries that automatically execute Web searches relevant to the query and com-

bine the search results with the structured data in the database. With WSQ, we can easily write interesting

queries that would otherwise require a significant amount ofprogramming or manual searching.

DSQ (Database-Supported Web Queries) takes the converse approach, enhancing Web keyword searches

with information in the database. For example, suppose our database contains information about movies,

in addition to information about U.S. states. When a DSQ usersearches for the keyword phrase “scuba

diving”, DSQ uses the Web to correlate that phrase with termsin the known database. For example, DSQ

could identify the states and the movies that appear on the Web most often near the phrase “scuba diving”,

and might even find state/movie/scuba-diving triples (e.g., an underwater thriller filmed in Florida). DSQ

can be supported using the system and techniques we present in this paper, but we focus primarily on Web-

supported queries (WSQ), leaving detailed exploration of DSQ for future work.

WSQ is based on introducing twovirtual tables, WebPages andWebCount, to any relational database.

A virtual table is a program that “looks” like a table to a query processor, but returns dynamically-generated
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tuples rather than tuples stored in the database. We will formalize our virtual tables in Section 3, but

for now it suffices to think ofWebPages as an infinite table that contains, for each possible Web search

expression, all of the URLs returned by a search engine for that expression.WebCount can be thought of as

an aggregate view overWebPages: for each possible Web search expression, it contains the total number of

URLs returned by a search engine for that expression. We useWebPages AV andWebCount AV to denote

the virtual tables corresponding to the AltaVista search engine, and we can have similar virtual tables for

Google or any other search engine. By referencing these virtual tables in a SQL query, and assuring that

the virtual columns defining the search expression are always bound during processing, we can answer the

example queries above, and many more, with SQL alone.

While the details of WSQ query execution will be given later,it should be clear that many calls to a

search engine may be required by one query, and it is not obvious how to execute such queries efficiently

given typical search engine latency. One possibility is to modify search engines to accept specialized calls

from WSQ database systems, but in this paper we instead show how small modifications to a conventional

database query processor can exploit properties of existing search engines.

When query processing involves many search engine requests, the key observations are:

• The latency for a single request is very high.

• Unless it explicitly supports parallelism, the query processor is idle during the request.

• Search engines (and the Web in general) can handle many concurrent requests.

Thus, for maximum efficiency, a query processor must be able to issue many Web requests concurrently

while processing a single query. As we will discuss in Section 4, traditional (non-parallel) query proces-

sors are not designed to handle this requirement. We might beable to configure or modify a parallel query

processor to help us achieve this concurrency. However, parallel query processors tend to be high-overhead

systems designed for multiprocessor computers, geared towards large data sets and/or complex queries. In

contrast, the basic problem of issuing many concurrent Web requests within a query has a more limited scope

that does not require traditional parallelism for a satisfactory solution. To support our WSQ framework, we

introduce a query execution technique calledasynchronous iteration that provides low-overhead concur-

rency for external virtual table accesses and can be integrated easily into conventional relational database

systems.

The main contributions of this paper are:

• A formalization of theWebPages andWebCount virtual tables and their integration into SQL, with

several examples illustrating the powerful WSQ queries enabled by this approach, and a discussion of

support for such virtual tables in existing systems (Section 3).

• Asynchronous iteration, a technique that enables non-parallel relational query processors to execute

multiple concurrent Web searches within a single query (Section 4). Although we discuss asyn-

chronous iteration in the context of WSQ, it is a general query processing technique applicable to

other scenarios as well, and it opens up interesting new query optimization issues.

• Experimental results from our WSQ prototype (Section 5), showing that asynchronous iteration can

speed up WSQ queries by a factor of 10 or more.
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2 Related Work

Several approaches have been proposed for bridging the divide between structured databases and the un-

structured Web.Wrappers are used in many systems to make information in Web pages act logically as

database elements, e.g., [AK97, CDSS98, HGMC+97, PGGMU95, RS97]. Wrappers are a useful means

of enabling expressive queries over data that was not necessarily designed for querying, and wrappers

also facilitate the integration of data from multiple, possibly heterogeneous sources, e.g., [CGMH+94,

LRO96, RAH+96]. Unfortunately, wrappers over Web data tend to be labor-intensive and brittle, of-

ten requiring “screen-scraping” to parse HTML into meaningful structures. Semistructured data models

[Abi97, Bun97, PGMW95], in particularXML [XML97], provide some hope for introducing structure into

Web data and queries [DFF+99, GMW99]. However, we believe that vast amounts of information will

remain in HTML, and will continue to be queried through search engines such as AltaVista, Google, and

others. New query languages have been proposed for dynamically navigating and extracting data from the

Web, e.g., [KS95, MMM97]. Our work differs in that we do not invent a new query language, and our

queries combine results from Web searches with traditionalstructured data.

The techniques we know of that most closely relate to WSQ/DSQare reported in [CDY95] and [DM97].

Written before the explosion of the World-Wide Web, [CDY95]focuses on execution and optimization

techniques for SQL queries integrated with keyword-based external text sources. There are three main

differences between [CDY95] and our work. First, they aim tominimize the number of external calls,

rather than providing a mechanism to launch the calls concurrently. Nevertheless, some of techniques they

propose are complementary to our framework and could be incorporated. Second, they assume that external

text sources return search results as unordered sets, whichenables optimizations that are not always possible

when integrating SQL with (ranked) Web search results. Third, some of their optimizations are geared

towards external text searches that return small (or empty)results, which we believe will be less common

in WSQ given the breadth of the World-Wide Web. [DM97] discusses approaches for coupling a search

engine with SQL, again without focusing on the World-Wide Web. A query rewrite scheme is proposed for

automatically translating queries that call a search engine via a user-defined predicate into more efficient

queries that integrate a search engine as a virtual table. While we also use a virtual table abstraction for

search engines, [DM97] does not address the issue of high-latency external sources, which forms the core

of much of this paper.

The integration of external relations into a cost-based optimizer for LDL is discussed in [CGK89]. The

related, more general problem of creating and optimizing query plans over external sources with limited

access patterns and varying query processing capabilitieshas been considered in work on data integration,

e.g., [HKWY97, LRO96, Mor88, RSU95, YLGMU99]. In contrast,we focus on a specific scenario of one

type of external source (a Web search engine) with known query capabilities. [BT98] addresses the situation

where an external source may be unavailable at a particular time: a query over multiple external sources is

rewritten into a sequence of incremental queries over subsets of sources, such that the query results can be

combined over time to form the final result. Although the asynchronous iteration technique we introduce

shares the general spirit of computing portions of a query and filling in remaining values later, our technique

operates at a much finer (tuple-level) granularity, it does not involve query rewriting, and the goal is to
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enable concurrent processing of external requests rather than handling unavailable sources.

As will be seen in Section 4, we rely ondependent joins to supply bindings to our virtual tables when

we integrate Web searches into a SQL query. Hence, previous work on optimizing and efficiently executing

queries involving dependent joins is highly applicable. A general-purpose query optimization algorithm

in the presence of dependent joins is provided in [FLMS99]. Acaching technique that can be applied to

improve the implementation of dependent joins is discussedin [HN96].

Much of the research discussed in this section is either preliminary or complementary to WSQ/DSQ.

To the best of our knowledge, no previous work has taken our approach of enabling a non-parallel database

engine to support many concurrent calls to external sourcesduring the execution of a single query.

3 Virtual Tables in WSQ

For the purpose of integrating Web searches with SQL, we can can abstract a Web search engine through a

virtual WebPages table:

WebPages(SearchExp, T1, T2, ..., Tn, URL, Rank, Date)

whereSearchExp is a parameterized string representing a Web search expression. SearchExp uses “%1”,

“%2”, and so on to refer to the values that are bound during query processing to attributesT1, T2, ..., Tn,

in the Unixprintf or scanf style. For example, ifSearchExp is “%1 near %2”, T1 is bound to “Colorado”

andT2 is bound to “Denver”, then the corresponding Web search is “Colorado near Denver”. For a given

SearchExp and given bindings forT1, T2, ... Tn, WebPages contains 0 or more (virtual) tuples, where

attributesURL, Rank, andDate are the values returned by the search engine for the search expression. The

first URL returned by the search engine hasRank = 1, the second hasRank = 2, and so on. It is only practical

to useWebPages in a query whereSearchExp, T1, T2, ..., Tn are all bound, either by default (discussed

below), through equality with a constant in theWhere clause, or through an equi-join. In other words, these

attributes can be thought of as “inputs” to the search engine. Furthermore, because retrieving all URLs for a

given search expression could be extremely expensive (requiring many additional network requests beyond

the initial search), it is prudent to restrictRank to be less than some constant (e.g.,Rank < 20), and this

constant also can be thought of as an input to the search engine.

A simple but very useful view overWebPages is:

WebCount(SearchExp, T1, T2, ..., Tn, Count)

whereCount is the total number of pages returned for the search expression. Many Web search engines can

return a total number of pages immediately, without delivering the actual URLs. As we will see,WebCount

is all we need for many interesting queries.

Note that for both tables, not only are tuples generated dynamically during query processing, but the

number of columns is also a function of the given query. That is, a query might bind only columnT1 for a

simple keyword search, or it might bindT1, T2, ...,T5 for a more complicated search. Thus, we really have

an infinite family of infinitely large virtual tables. For convenience in queries,SearchExp in both tables has
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a default value of “%1 near %2 near %3 near ... near %n”.1 For WebPages, if no restriction onRank is

included in the query, currently we assume a default selection predicateRank < 20 to prevent “runaway”

queries.

Note also that virtual tableWebCount could be viewed instead as a scalar function, with input parameters

SearchExp, T1, T2, ...,Tn, and output valueCount. However, sinceWebPages and other virtual tables can

be more general than scalar functions—they can “return” anynumber of columns and any number of rows—

our focus in this paper is on supporting the general case.

3.1 Examples

In this section we useWebPages andWebCount to write SQL queries for the examples presented informally

in Section 1. In addition to the two virtual tables, our database contains one regular stored table:

States(Name, Population, Capital)

For each query, we restate it in English, write it in SQL, and show a small fraction of the actual result. The

population values used for Query 2 are 1998 estimates from the U.S. Census Bureau [Uni98]. Queries 1–5

were issued to AltaVista (altavista.com), and Query 6 integrates results from both AltaVista and Google

(google.com). All searches were performed in October 1999.2

Query 1: Rank all states by how often they appear by name on the Web.

Select Name, Count

From States, WebCount

Where Name = T1

Order By Count Desc

Note that we are relying on the default value of “%1” for WebCount.SearchExp. The first five results are:

<California, 4995016> <Washington, 4167056> <New York, 3764513>

<Texas, 2724285> <Michigan, 1621754> ...

Readers might be unaware that Texas and Michigan are the 2nd and 8th most populous U.S. states, respec-

tively. Washington ranks highly because it is both a state and the U.S. capital; a revised query could exploit

search engine features to avoid some false hits of this nature, but remember that our current goal is not one

of “cleansing” or otherwise improving accuracy of Web searches.

Query 2: Rank states by how often they appear, normalized by state population.

Select Name, Count/Population As C

From States, WebCount

Where Name = T1

Order By C Desc

1For search engines such as Google that do not explicitly support the “near” operator, we use “%1 %2 ... %n” as the default.
2It turns out that repeated identical Web searches may returnslightly different results, so your results could exhibit minor

differences.
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Now, the first five results are:

<Alaska, 1149> <Washington, 733> <Delaware, 690> <Hawaii, 635> <Wyoming, 603> ...

Query 3: Rank states by how often they appear on the Web near the phrase “four corners”.

Select Name, Count

From States, WebCount

Where Name = T1 and T2 = ’four corners’

Order By Count Desc

Recall that “%1 near %2” is the default value forWebCount.SearchExp whenT1 andT2 are bound. There

is only one location in the United States where a person can bein four states at once: the “four corners”

refers to the point bordering Colorado, New Mexico, Arizona, and Utah. Note the dramatic dropoff inCount

between the first four results and the fifth:

<Colorado, 1745> <New Mexico, 1249> <Arizona, 1095> <Utah, 994> <California, 215> ...

Query 4: Which state capitals appear on the Web more often than the state itself?

Select Capital, C.Count, Name, S.Count

From States, WebCount C, WebCount S

Where Capital = C.T1 and Name = S.T1 and C.Count > S.Count

In the following (complete) results, we again see some limitations of text searches on the Web—more than

half of the results are due to capitals that are very common inother contexts, such as “Columbia” and

“Lincoln”:

<Atlanta, 1053868, Georgia, 958280> <Lincoln, 669059, Nebraska, 385991>

<Boston, 1409828, Massachusetts, 1006946> <Jackson, 1120655, Mississippi, 662145>

<Pierre, 663310, South Dakota, 283821> <Columbia, 1668270, South Carolina, 540618>

Query 5: Get the top two URLs for each state. We omit query results since they are not particularly com-

pelling.

Select Name, URL, Rank

From States, WebPages

Where Name = T1 and Rank <= 2

Order By Name, Rank

Query 6: If Google and AltaVista both agree that a URL is among the top5 URLs for a state, return the state

and the URL.

Select Name, AV.URL

From States, WebPages AV AV, WebPages Google G

Where Name = AV.T1 and Name = G.T1 and AV.Rank <= 5 and G.Rank <= 5 and AV.URL = G.URL
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Surprisingly, Google and AltaVista only agreed on the relevance of 4 URLs:

<Indiana, www.indiana.edu/copyright.html> <Louisiana, www.usl.edu>

<Minnesota, www.lib.umn.edu> <Wyoming, www.state.wy.us/state/welcome.html>

3.2 Support for virtual tables in existing systems

Both IBM DB2 and Informix currently support virtual tables in some form. We give a quick overview of

the support options in each of these products, summarizing how we can modify our abstract virtual table

definitions to work on such systems. (We understand that Oracle also expects to support virtual tables in a

future release.) See [RP98] for more information about support for virtual tables in database products.

In DB2, virtual tables are supported throughtable functions, which can be written in Java or C [IBM].

A table function must export the number and names of its columns. Hence, DB2 cannot support a variable

number of columns, so we would need to introduce a family of table functionsWebPages1, WebPages2,

etc. to handle the different possible number of arguments, up to some predetermined maximum; similarly

for WebCount. To the query processor, a table function is an iterator supporting methodsOpen, GetNext,

andClose. Currently, DB2 provides no “hooks” into the query processor for pushing selection predicates

into a table function. At first glance, this omission apparently prevents us from implementingWebPages or

WebCount, since both tables logically contain an infinite number of tuples and require selection conditions

to become finite. However, DB2 table functions support parameters that can be correlated to the columns of

other tables in aFrom clause. For example, consider:

Select R.c1, S.c3

From R, Table(S(R.c2))

In this query,S is a table function that takes a single parameter. DB2 will create a new table function

iterator for each tuple inR, passing the value ofc2 in that tuple to theOpen method ofS. (DB2 requires

that references toS come afterR in theFrom clause.) With this feature, we can implementWebPages and

WebCount by requiring thatSearchExp and then search terms are supplied as table function parameters,

either as constants or using theFrom clause join syntax shown in the example query above. In the case of

WebPages, we must pass the restriction onRank as a parameter to the table function as well.

Informix supports virtual tables through itsvirtual table interface [SBH98]. Unlike DB2, Informix

provides hooks for a large number of functions that the DBMS uses to create, query, and modify tables.

For example, in Informix a virtual table scan can access the associatedWhere conditions, and therefore

can process selection conditions. However, the Informix query processor gives no guarantees about join

ordering, even when virtual tables are involved, so we cannot be sure that the columns used to generate the

search expression are bound by the time the query processor tries to scanWebPages or WebCount. Thus,

Informix currently cannot be used to implementWebPages or WebCount (although, as mentioned earlier,

WebCount could be implemented as a user-defined scalar function, which is supported in Informix).
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4 WSQ Query Processing

Even with an ideal virtual table interface, traditional execution of queries involvingWebCount or WebPages

would be extremely slow due to many high-latency calls to oneor more Web search engines. As mentioned

in Section 2, [CDY95] proposes optimizations that can reduce the number of external calls, and caching

techniques [HN96] are important for avoiding repeated external calls. But these approaches can only go so

far—even after extensive optimization, a query involvingWebCount or WebPages must issue some number

of search engine calls.

In many situations, the high latency of the search engine will dominate the entire execution time of the

WSQ query. Any traditional non-parallel query plan involving WebCount or WebPages will be forced to

issue Web searches sequentially, each of which could take one or more seconds, and the query processor

is idle during each request. Since Web search engines are built to support many concurrent requests, a

traditional query processor is making poor use of availableresources.

Thus, we want to find a way to issue as many concurrent Web searches as possible during query process-

ing. While a parallel query processor (such as Oracle, Informix, Gamma [DGS+90], or Volcano [Gra90])

is a logical option to evaluate, it is also a heavyweight approach for our problem. For example, suppose a

query requires 50 independent Web searches (for 50 U.S. states, say). To perform all 50 searches concur-

rently, a parallel query processor must not only dynamically partition the problem in the correct way, it must

then launch 50 query threads or processes. Supporting concurrent Web searches during query processing is

a problem of restricted scope that does not require a full parallel DBMS.

In the remainder of this section we describeasynchronous iteration, a new query processing technique

that can be integrated easily into a traditional non-parallel query processor to achieve a high number of con-

current Web searches with low overhead. As we will discuss briefly in Section 4.2, asynchronous iteration is

in fact a general query processing technique that can be usedto handle a high number of concurrent calls to

any external sources. (In future work, we plan to compare asynchronous iteration against the performance

of a parallel query processor over a range of queries involving many calls to external sources.) As described

in the following subsections, asynchronous iteration alsoopens up interesting new query optimization prob-

lems.

4.1 Asynchronous Iteration

Let us start with an example. Suppose in our relational database we have a simple tableSigs(Name),

identifying the different ACM Special Interest Groups, called “Sigs”—e.g., SIGMOD, SIGOPS, etc. Now

we want to useWebCount to rank the Sigs by how often they appear on the Web near the keyword “Knuth”:3

Select *

From Sigs, WebCount

Where Name = T1 and T2 = ’Knuth’

Order By Count Desc
3Incidentally, the results (in order) from AltaVista are: SIGACT, SIGPLAN, SIGGRAPH, SIGMOD, SIGCOMM, SIGSAM.

For all other Sigs,Count is 0.
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Dependent Join:

Sigs.Name  +

WebCount.T1


Scan:

Sigs


EVScan:

WebCount


(T2 = 'Knuth')


Sort:

WebCount.Count


Figure 2: Query plan forSigs 1 WebCount

Figure 2 shows a possible query plan for this query. For this plan, and for all other plans in this paper,

we assume an iterator-based execution model [Gra93] where each operator in the plan tree supportsOpen,

GetNext, andClose operations. TheDependent Join operator requires eachGetNext call to its right child to

include a binding from its left child, thus limiting the physical join techniques that can be used to those of the

nested-loop variety (although work in [HN96] describes hashing and caching techniques that can improve

performance of a dependent join). TheEVScan operator is an external virtual table scan. We assume that

we are working with a query processor that can produce plans of this sort—with dependent joins and scans

of virtual tables—such as IBM DB2 (recall Section 3.2).

Without parallelism, EVScan performs a sequence of Web searches during execution of this query plan

(one for eachGetNext call), and the query processor may be idle for a second or moreeach time. Intuitively,

we would like the query processor to issue many Web searches simultaneously, without the overhead of a

parallel query processor. For this small data set—37 tuplesfor the 37 ACM Sigs—we would like to issue

all 37 requests at once. To achieve this behavior we propose asynchronous iteration, a technique involving

three components:

1. A modified, asynchronous version of EVScan that we callAEVScan.

2. A new physical query operator calledReqSync (for “Request Synchronizer”), which waits for asyn-

chronously launched calls to complete.

3. A global software module calledReqPump (for “Request Pump”), for managing all asynchronous

external calls.

The general idea is that we modify a query plan to incorporateasynchronous iteration by replacing EV-

Scans with AEVScans and inserting one or more ReqSync operators appropriately within the plan. AEV-

Scan and ReqSync operators both communicate with the globalReqPump module. No other query plan

operators need to be modified to support asynchronous iteration.

Now we walk through the actual behavior of asynchronous iteration using our example. Consider the

query plan in Figure 3. In comparison to Figure 2, the EVScan has been replaced by an AEVScan, the

ReqSync operator has been added, and the global ReqPump is used. When tuples are constructed during

query processing, we allow any attribute value to be marked with a specialplaceholder that serves two roles:

1. The placeholder indicates that the attribute value (and thus the tuple it’s a part of) is incomplete.
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Sort:

WebCount.Count


Scan:

Sigs


ReqPump


Pending Calls


Returned Calls


ReqSync


AEVScan:

WebCount


(T2 = 'Knuth')


Dependent Join:

Sigs.Name  +

WebCount.T1


Figure 3: Asynchronous iteration

2. The placeholder identifies a pending ReqPump call associated with the missing value—that is, the

pending call that will supply the true attribute value when the call finishes.

Recall that all of our operators, including AEVScan and ReqSync, obey a standard iterator interface, includ-

ing Open, GetNext, andClose methods. We now discuss in turn how the operators in our example query

plan work.

The Scan and Sort operators are oblivious to asynchronous iteration. The Dependent Join (hereafter DJ)

is a standard nested-loop operator that also knows nothing about asynchronous iteration. Now consider the

AEVScan. When DJ gets a new tuple fromSigs, it calls Open on AEVScan and then callsGetNext with

Sigs.Name. AEVScan in turn contacts ReqPump and registers an externalcall C with T1 = Sigs.Name and

T2 = ’Knuth’. (C is a unique identifier for the call.) ReqPump is a module that issues asynchronous network

requests and stores the responses to each request as they return. In the case of callC, the returned data

is simply a value forCount; ReqPump stores this value in a hash tableReqPumpHash, keyed onC. To

achieve concurrency, as soon as AEVScan registers its call with ReqPump, it returns to DJ (as the result of

GetNext) oneWebCount tupleT where theCount attribute contains as a placeholder the call identifierC.

DJ combinesT with Sigs.Name and returns the new tuple to its parent (ReqSync).

Now let us consider the behavior of ReqSync. When itsOpen method is called from above by Sort,

ReqSync callsOpen on DJ below and then callsGetNext on DJ until exhaustion, buffering all returned (in-

complete) tuples inside ReqSync. We choose this full-buffering implementation for the sake of simplicity,

and we will revisit this decision momentarily. ReqSync needs to coordinate with ReqPump to fill in place-

holders before returning tuples to its parent. The problem is a variation of the standard “producer/consumer”

synchronization problem. Each ReqPump call is a producer: when a callC ′ completes (and its data is stored

in ReqPumpHash), ReqPump signals to the consumer (ReqSync)that the data forC ′ is available. When

signaled by ReqPump, ReqSync locates the incomplete tuple containingC ′ as a placeholder (using its own

local hash table), and replacesC ′ with the Count value retrieved from ReqPumpHash. When ReqSync’s

GetNext method is called from above, if ReqSync has no completed tuples then it must wait for the next
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signal from ReqPump before it can return a tuple to its parent. Note that in the general case, tuples that do

not depend on pending ReqPump calls may pass directly through a ReqSync operator.

In our simple implementation of ReqSync’sOpen method, all (incomplete) tuples generated by DJ are

buffered inside ReqSync before ReqSync can return any (completed) tuples to its parent. In the case of

very large joins it might make sense for ReqSync to make completed tuples available to its parent before

exhausting execution of its child subplan. As with query execution in general, the question of materializing

temporary results versus returning tuples as they become available is an optimization issue [GMUW00].

As we will show in Section 5, asynchronous iteration can improve WSQ query performance by a factor

of 10 or more over a standard sequential query plan. However,there are still three important lingering issues

that we will discuss in Sections 4.3, 4.4, and 4.5, respectively:

1. As seen in our example, an external call forWebCount always generates exactly one result tuple. But

a call forWebPages may produce any number of tuples, including none, and the number of generated

tuples is not known until the call is complete.

2. When a query plan involves more than one AEVScan, we must account for the possibility that an

incomplete tuple buffered in ReqSync could contain placeholders for two or more different pending

ReqPump calls.

3. We need to properly place ReqSync operators in relation toother query plan operators, both to guar-

antee correctness and maximize concurrency.

Monitoring and controlling resource usage is also an important issue when we use asynchronous iter-

ation. So far we have assumed that during query execution we can safely issue an unbounded number of

concurrent search requests. Realistically, we need to regulate the amount of concurrency to prevent a search

engine from being inundated with an “unwelcome” number of simultaneous requests. Similarly, we may

want to limit the total number of concurrent outgoing requests to prevent WSQ from exhausting its own

local resources, such as network bandwidth. It is quite simple to modify ReqPump to handle such limits:

we need only add one counter to monitor the total number of active requests, and one counter for each ex-

ternal destination. An administrator can configure each counter as desired. When a call is registered with

ReqPump but cannot be executed because of resource limits, the call is placed on a queue. As resources free

up, queued calls are executed.

4.2 Applicability of asynchronous iteration

Before delving into details of the three remaining technical issues outlined in the previous subsection, let

us briefly consider the broader applicability of asynchronous iteration. Although this paper describes asyn-

chronous iteration in the specific context of WSQ, the technique is actually quite general and applies to most

situations where queries depend on values provided by high-latency, external sources. More specifically, if

an external source can handle many concurrent requests, or if a query issues independent calls to many dif-

ferent external sources, then asynchronous iteration is appropriate. Our WSQ examples primarily illustrate

the first case (many concurrent requests to one or two search engines). As an example of the second case,
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ReqSync


Scan:

Sigs


AEVScan:

WebPages

(Rank <= 3)


ReqPump


Dependent Join:

Sigs.Name  +

WebPages.T1


Figure 4: Query plan forSigs 1 WebPages

asynchronous iteration could be used to implement a Web crawler: given a table of thousands of URLs, a

query over that table could be used to fetch the HTML for each URL (for indexing and to find the next round

of URLs). In this scenario, WSQ can exploit all available resources without burdening any external sources.

As mentioned earlier, if we try to use a parallel query processor to achieve the high level of concurrency

offered by asynchronous iteration, then we would need to partition tables dynamically into many small

fragments and spawn many query threads or processes. Issuing many threads can be expensive. For example,

the highest performance Web servers do not use one thread perHTTP request; rather, many network requests

are handled asynchronously by an event-driven loop within asingle process [PDZ99]. By implementing the

ReqPump module of asynchronous iteration in a similar manner, we can enable many simultaneous calls

with low overhead. Nonetheless, as future work we plan to conduct experiments comparing the performance

of asynchronous iteration against a parallel DBMS for managing concurrent calls to external sources.

4.3 ReqSync tuple generation or cancellation

The previous example (Figure 3) was centered on a dependent join with WebCount, which always yields

exactly one matching tuple. ButWebPages, and any other virtual table in general, may return any number of

tuples for given bindings—including none. Because we want AEVScan to return from aGetNext call without

waiting for the actual results, we always begin by assuming that exactly one tuple joins, then “patch” our

results in ReqSync.

Consider the following query, which retrieves the top 3 URLsfor each Sig.

Select *

From Sigs, WebPages

Where Name = T1 and Rank <= 3

For each Sig, joining withWebPages may generate 0, 1, 2, or 3 tuples. Assume a simple query plan as

shown in Figure 4. As in our previous example, AEVScan will use ReqPump to generate 37 search engine

calls, and ReqSync will initially buffer 37 tuples. Now consider what happens for a tupleT , waiting in a

ReqSync buffer for a callC to complete. WhenC returns, there are three possibilities:

1. If C returns no rows, then ReqSync deletesT from its buffer.
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ReqSync


Scan:

Sigs
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(Rank <= 3)
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(Rank <= 3)


ReqPump


Dependent Join:

Sigs.Name  +


WP_AV.T1


Dependent Join:

Sigs.Name  +


WP_Google.T1


Figure 5: Query plan forSigs 1 WebPages AV 1 WebPages Google

2. If C returns 1 row, then ReqSync fills in the attribute values forT as generated byC.

3. If C returnsn rows, wheren > 1, then ReqSync dynamically createsn − 1 additional copies ofT ,

and fills in the attribute values accordingly.

In our example, since all Sigs are mentioned on at least 3 Web pages, 111 tuples are ultimately produced by

ReqSync.

4.4 Handling multiple AEVScans

Now let us consider query plans involving multiple AEVScans. For example, the following query finds the

top 3 URLs for each Sig from two different search engines.4

Select *

From Sigs, WebPages AV AV, WebPages Google G,

Where Name = AV.T1 and Name = G.T1 and AV.Rank <= 3 and G.Rank <= 3

Figure 5 shows a query plan that maximizes concurrent requests. Note that there is only one ReqSync

operator, not one for each AEVScan. The placement and merging of ReqSync operators is discussed in Sec-

tion 4.5. In this plan, the bottom Dependent Join will generate 37 tuples, each with placeholders identifying

a ReqPump call forWebPages AV. The upper join will augment each of these tuples with additional place-

holders corresponding to a ReqPump call forWebPages Google. Hence, ReqSync will buffer 37 incomplete

tuples, each one with placeholders for two different ReqPump calls.

The algorithm for tuple cancellation, completion, and generation at the end of Section 4.3 applies in

this case as well, with a slight nuance: dynamically copied tuples (case 3 in the algorithm) may proliferate

references to pending calls. For example, suppose one of theincomplete tuplesT in the ReqSync buffer is
4The query actually finds all combinations of the top 3 URLs from each search engine, but it nonetheless serves to

illustrate the point of this section.
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waiting for the completion of two calls, indicated by two different placeholders: one for callCA to AltaVista

and the other for callCG to Google. IfCA returns first, with 3 tuples, then ReqSync will make two additional

copies ofT . When copyingT , references to pending callCG are also copied. OnceCG returns, all tuples

referencingCG must be updated.

4.5 Query plan generation

Recall that converting a query plan to use asynchronous iteration has two parts: (1) EVScan operators are

converted to AEVScans, and (2) ReqSync operators are added to the plan. In this section we describe

an algorithm for placing ReqSync operators within plans. Our primary goal is to introduce a correct and

relatively simple algorithm that: (1) attempts to maximizethe number of concurrent Web searches; (2)

attempts to maximize the amount of query processing work that can be performed while waiting for Web

requests to be processed; and (3) is easy to integrate into existing query compilers. ReqSync operators can

significantly alter the cost of a query plan, and the effects on query execution time will often depend on the

specific database instance being queried, as well as the results returned by search engines. Fully addressing

cost-based query optimization in the presence of asynchronous iteration is an important, interesting, and

broad problem that is beyond the scope of this paper. We intend to focus on optimization in future work.

We assume that the optimizer can generate plans with dependent joins [FLMS99] and EVScans, but

knows nothing about asynchronous iteration; a plan produced by the optimizer is the input to our algorithm.

We continue to assume an iterator model for all plan operators. We now describe the three steps in our

placement of ReqSync operators:Insertion, Percolation, andConsolidation.

4.5.1 ReqSync Insertion

Recall that we first convert each EVScan operator in our inputplanP to an asynchronous AEVScan. Next,

a ReqSync operator is inserted directly above each AEVScan.More formally, for each AEVScani in P , we

insert ReqSynci into P as the parent of AEVScani. The previous parent of AEVScani becomes the parent of

ReqSynci. This transformation is obviously correct since no operations occur between each asynchronous

call and the blocking operator that waits for its completion.

4.5.2 ReqSync Percolation

Next, we try to move ReqSync operators up the query plan. Intuitively, each time we pull up a ReqSync

operator we are increasing the amount of query processing work that can be done before blocking to wait

for external calls to complete. Sometimes we can rewrite thequery plan slightly to enable ReqSync pull-up.

For example, if the parent of a ReqSync is a selection predicate that depends on attribute values filled in by

ReqSync, we can pull ReqSync higher by pulling the selectionpredicate up first. Similarly, if a join depends

on values filled in by ReqSync, we can rewrite the join as a selection over a cross-product and move the

ReqSync above the cross-product.

Our actual algorithm is based on the notion of an operatorO clashing with a ReqSync operator, in which

case we cannot pull ReqSync aboveO. Let ReqSynci.A denote the set of attributes whose values are filled
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in by the ReqSynci operator as ReqPump calls complete, i.e., the attributes whose values are substituted

with placeholders by AEVScani. We say thatO clashes with ReqSynci iff:

1. O depends on the value of any attribute in ReqSynci.A, or

2. O removes any attribute in ReqSynci.A via projection, or

3. O is an aggregation or existential operator

Case 1 is clear: an operator clashes if it needs the attributes filled in by ReqSynci to continue processing.

Case 2 is a bit more subtle. If we project away placeholders before the corresponding calls are complete,

then tuple cancellation or generation (Section 4.3) cannottake place properly, and extra tuples or incorrect

numbers of duplicates may be returned. Case 3 is similar to case 2: aggregation (e.g., Count) and existential

quantification require an accurate tally of incoming tuples.

For each ReqSynci in the plan, we repeatedly pull ReqSynci above any non-clashing operators. If an

operatorO does clash, we check to see ifO is a projection or selection; if so, we can pullO above its par-

ent first. Otherwise, ifO is a clashing join, we rewrite it as a selection over a cross-product. Other similar

rewrites are possible. For example, a set union operator must examine each complete tuple to perform dupli-

cate elimination; we can rewrite this clashing operator as a“Select Distinct” over a non-clashing bag union

operator. Our percolation algorithm clearly terminates since operators are only pulled up the plan. Also, the

order in which we percolate ReqSync operators does not matter—the only potential effect is a different final

ordering between adjacent ReqSync operators, something that is made irrelevant by ReqSync Consolidation,

which we discuss next. We will illustrate the percolation algorithm through examples momentarily.

4.5.3 ReqSync Consolidation

After percolation, we may find that two or more ReqSync operators are now adjacent in the plan. At this

point we can merge adjacent ReqSync operators since they perform the same overall function, and a single

ReqSync operator can manage multiple placeholder values intuples as discussed in Section 4.4. When

merging ReqSynci with ReqSyncj , ReqSynci.A ∪ ReqSyncj .A is the set of attributes that must be filled in

by the new ReqSync operator.

4.5.4 Plan generation examples

We now show three examples demonstrating our ReqSync placement algorithm. We point out the perfor-

mance gains asynchronous iteration can provide, along withsome potential pitfalls of our current algorithm.

Example 1: Figure 6 shows how our ReqSync placement algorithm generates the query plan we saw earlier

in Figure 5 for theSigs 1 WebPages AV 1 WebPages Google query. We omit ReqPump from these (and all

remaining) query plans. Figure 6(a) shows the input to the algorithm, a simple left-deep query plan without

asynchronous iteration. Figure 6(b) shows the plan after ReqSync Insertion: the EVScans are converted to

AEVScans and a ReqSync operator is inserted directly above each EVScan. Figure 6(c) shows the plan after

ReqSync Percolation. We first move ReqSync1 above both dependent joins, since neither join depends on

any values returned byWebPages AV (i.e., URL, Date, Rank). ReqSync2 is then pulled above its parent
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Figure 6: Generating the query plan forSigs 1 WebPages AV 1 WebPages Google in Figure 5
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dependent join. The final plan after ReqSync Consolidation is shown in Figure 6(d). With this plan, the

query processor can process all 74 external calls (37 Sigs per join) concurrently.

This example demonstrates some interesting advantages of asynchronous iteration over possible alter-

natives. First, one might consider simply modifying the dependent join operator to work in parallel: change

the dependent join to launch many threads, each one for joining one left-hand input tuple with the right-hand

EVScan. While this approach will provide maximal concurrency for many simple queries, it prevents con-

currency among requests from multiple dependent joins: thequery processor will block until the first join

completes. Another approach, as discussed in Section 4.2, is to use a (modified) parallel query processor for

this query. However, performing both dependent joins in parallel requires a nontrivial rewrite to transform

our 2-join plan into a 3-join plan where both dependent joinsare children of a final “merging” join.2

Example 2: Consider the following query, where a cross-product with ameaningless tableR is introduced

for illustrative purposes:

Select *

From Sigs, WebCount AV AV, R, WebCount Google G

Where Name = AV.T1 and Name = G.T1

Figure 7(a) shows the result of running our ReqSync placement algorithm over a left-deep input plan in

which the cross-product withR is performed between the two virtual table dependent joins.With or without

asynchronous iteration, this input plan is problematic: byperforming the cross-product before the join

with WebCount Google, a straightforward dependent join implementation will send |R| identical calls to

Google for each Sig. Thus, incorporating a local cache of search engine results is very important for such a

plan. Furthermore, when using asynchronous iteration withthe plan in Figure 7(a), the cross-product with

tableR will generate|R| copies of the incomplete tuples fromWebCount AV that must be buffered and then

patched by ReqSync. Depending on the data, it may be preferable to use two ReqSync operators as shown in

Figure 7(b). By doing so, we reduce the total number of attribute values to be patched by|Sigs| ·(|R|−1), or

roughly a factor of 2 for reasonably large|R|. On the down side, we will block after the first join, preventing

us from concurrently issuing the Web requests forWebCount Google. Had the cross-product withR been

placed last in the original input plan, another alternativewould be to place a single ReqSync operator above

the dependent joins but below the cross-product.

This contrived example serves to illustrate the challenging query optimization problems that arise when

we introduce AEVScan and ReqSync operators. Still, in many cases our simple ReqSync placement algo-

rithm does perform well, as we will see in Section 5.2

Example 3: As a final example suppose that we also have a tableCSFields(Name) containing computer

science fields (e.g., “databases”, “operating systems”, “artificial intelligence”, etc.). Consider the following

query, which finds URLs that are among the top 5 URLs for both a Sig and a CSField.

Select S.URL

From Sigs, WebPages S, CSFields, WebPages C
Where Sigs.Name = S.T1 and CSFields.Name = C.T1 and S.Rank <= 5 and

C.Rank <= 5 and S.URL = C.URL
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Figure 7: A query plan mixing two dependent joins with a cross-product
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Figure 8: Generating the query plan for query overSigs andCSFields

An input query plan is shown in Figure 8(a). Note that the input plan is bushy, and the join at the the root of

the plan may well be implemented as a sort-merge or hash join.After inserting the two ReqSync operators,

we first pull them above the dependent joins. To pull the ReqSyncs above the upper join, we rewrite the join

into a selection over a cross-product, as described in Section 4.5.2. (Because the join depends on attributes

supplied by WebPages, we can’t pull the ReqSync above it without the rewrite.) Figure 8(b) shows the final

plan.

In this query, given that theSigs andCSFields tables are tiny, rewriting the join as a cross-product is

a big performance win: it enables the query processor to execute all external calls (from both the left and

right subplans) concurrently. However, in other situations, such as if the cross-product is huge, this specific

rewrite could be a mistake.

This example illustrates one more important issue. Supposethat a Sig does not have any URLs on a

given search engine. Indeed, assume for the moment that all Sigs have no URLs, so all Sig tuples generated

will ultimately be canceled. In that case, pulling the ReqSync operator up as in Figure 8(b) results in an

unnecessary cross-product between placeholder tuples forCSFields and WebPages, since ultimately the

cross-product (and therefore the join) will be empty. In thegeneral case, because AEVScan always returns

exactly one matching tuple before the final result is known, aplan could perform unnecessary work—work

that would not be done if the query processor waited for the true Web search result before continuing.2

To summarize, the above examples demonstrate how our ReqSync placement algorithm focuses on

maximizing the number of concurrent external calls for any given query plan. If external calls dominate

query execution time, then asynchronous iteration can provide dramatic performance improvements, as
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we demonstrate in Section 5. Nevertheless, there are several potential performance pitfalls that are best

addressed by a complete cost-based query optimizer incorporating asynchronous iteration:

• Manipulating query plans to use asynchronous iteration maychange their relative performance. Given

two equivalent input plansA and B, whereCost(A) < Cost(B), there is no guarantee that the

asynchronous version ofA will remain cheaper than the asynchronous version ofB.

• The ReqSync operator buffers tuples, possibly proliferates them, and fills in missing attribute values.

In some situations it is possible that the amount of work required by ReqSync offsets the advantages

of asynchronous iteration.

• Asynchronous iteration assumes non-empty join results andcontinues processing, patching results

later as necessary. If join results do turn out to be empty, then our “optimistic” approach will have

performed more work than necessary.

• In order to pull ReqSync operators higher, we may move or rewrite operators in the input query plan,

such as replacing joins with selections over cross-products. Additional work induced by these rewrites

could offset the benefit of additional concurrency.

5 Implementation and Experiments

We have integrated the two WSQ virtual tables and our asynchronous iteration technique into a homegrown

relational database management system calledRedbase. (Redbase is constructed by students at Stanford

in a course on DBMS implementation.) Redbase supports a subset of SQL for select-project-join queries,

and it includes a page-level buffer and iterator-based query execution. However, it was not designed to

be a high-performance system: the only available join technique is nested-loop join, and there is no query

optimizer although users can specify a join ordering manually. Nevertheless, Redbase is stable and sophis-

ticated enough to support the experiments in this section, which demonstrate the potential of asynchronous

iteration. Our experiments show the considerable performance improvement of running WSQ queries with

asynchronous iteration as opposed to conventional sequential iteration.

Measuring the performance of WSQ queries has some inherent difficulties. First, performance of a

search engine such as AltaVista can fluctuate considerably depending on load and network delays beyond

our control. Second, because of caching behavior beyond ourcontrol, repeated searches with identical

keyword expressions may run far faster the second (and subsequent) times. To mitigate these issues, we

waited at least two hours between queries that issue identical searches, which we verified empirically is long

enough to eliminate caching behavior. Also, we performed our experiments late at night when the load on

search engines is low and, more importantly, consistent.

In order to run many experiments without waiting hours between each one, we usetemplate queries

and instantiate multiple versions of them that are structurally similar but result in slightly different searches

being issued. Consider the following template.
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Synchronous (secs) Asynchronous (secs) Improvement

Template 1

Run 1 (8 queries) 23.13 3.88 6.0x

Run 2 (8 other queries) 32.8 3.5 9.4x

Template 2

Run 1 (8 queries) 70.75 5.25 13.5x

Run 2 (8 other queries) 64.25 5.13 12.5x

Template 3

Run 1 (8 queries) 122.5 6.25 19.6x

Run 2 (8 other queries) 76.13 4.63 16.4x

Table 1: Experimental results

Template 1:

Select Name, Count

From States, WebCount

Where Name = T1 and WebCount.T2 = V1

V1 represents a constant that is chosen from a pool of differentcommon constants, such as “computer”,

“beaches”, “crime”, “politics”, “frogs”, etc. For our experiments, we created 8 instances of the template

by choosing 8 different constants from the pool. After timing all queries using asynchronous iteration, we

waited two hours and then timed all queries using the standard query processor. For corroboration, we

repeated the test with 8 new query instances.

The results for this template (and the two below) are shown inTable 1. For each template, we list the

results of two runs. The times listed are the average execution time in seconds for the 8 queries, with and

without asynchronous iteration. AltaVista is used for the first two templates; the third uses both AltaVista

and Google. Experiments were conducted on a Sun Sparc Ultra-2 (2 x 200Mhz) 256MB RAM machine

running SunOS 5.6. The computer is connected to the Internetvia Stanford University’s network.

Template 2:

Select Name, Count, URL, Rank

From States, WebCount, WebPages

Where Name = WebCount.T1 and WebCount.T2 = V1 and

Name = WebPages.T1 and WebPages.T2 = V2 and WebPages.Rank <= 2

In this query template, we issue two searches for each tuple in States, one for WebCount and one for

WebPages. When instantiating the template we wanted to ensure thatV1 6= V2, so we selected 16 distinct

constants to create 8 query instances. In our prototype system, the join order is always specified by the order

of tables in theFrom clause, so for this query we joinedStates with WebCount, then joined the result with

WebPages. Results are shown in Table 1.
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Template 3: The following template is similar to the example in Section4.4 (Figure 5), with the added

constantV1. Again, we created 8 queries by instantiatingV1 with constants, and results are shown in

Table 1.

Select Name, AV.URL, G.URL

From Sigs, WebPages AV AV, WebPages Google G,

Where Name = AV.T1 and Name = G.T1 and AV.Rank <= 3 and G.Rank <= 3 and

AV.T2 = V1 and G.T2 = V1

Our results show clearly that asynchronous iteration can improve the performance of WSQ queries

by a factor of 10 or more. Of course, all of the example querieshere are over very small local tables, so

network costs dominate. These results in effect illustratethe best-case improvement offered by asynchronous

iteration. For queries involving more complex local query processing over much larger relations, the speedup

may be less dramatic, and the results of any such experiment would be highly dependent on the sophistication

of the database query processor (independent of asynchronous iteration). Further, as illustrated in Section 4,

complex queries may introduce optimization decisions thatcould have a significant impact on performance.

In future work we plan a comprehensive study of query optimization incorporating asynchronous iteration,

including additional experiments and performance comparisons to alternate approaches such as parallel

query processing.

We have created a simple interface that allows users to pose limited queries over our WSQ implementa-

tion. Please visit http://www-db.stanford.edu/wsq.
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